blob: ef01106328afc55031afc6a1d1c6d431ffd63f38 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
#lang racket
(provide
iterative-improve
close-enough?
repeated
fixed-point
average
average-damp
smoother
square
cube
power
compose
double
deriver
golden-ratio
miller-raban-test
all-miller-raban
coprimer
filtered-accumulate
product
sum
simpson
fermat?
all-fermat
expmoder
divides?
find-divisor
smallest-divisor)
(require sicp)
;;abstract procedures
(define (iterative-improve good-enuf? improve)
(lambda (guess)
(define (try g)
(let ((next (improve g)))
(if (good-enuf? next g)
next
(try next))))
(try guess)))
(define (filtered-accumulate pred combiner null-value term a next b)
(define (iter a result)
(cond
((> a b) result)
((pred a)
(iter (next a) (combiner (term a) result)))
(else (iter (next a) result))))
(iter a null-value))
;; basic
(define (cube x) (* x x x))
(define (square x) (* x x))
(define (power x n)
(cond
((= n 0) 1)
((= n 1) x)
(else (* x (power x (dec n))))))
(define (close-enough? tolerance)
(lambda (x y)
(< (abs (- x y)) tolerance)))
(define (average a b)
(/ (+ a b) 2))
(define (divides? a b)
(= (remainder b a) 0))
(define (find-divisor n test-divisor)
(cond
((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor
n
((lambda (td) (if (= td 2) 3 (+ td 2)))
test-divisor)))))
(define (smallest-divisor n)
(find-divisor n 2))
;; functions
(define (double f)
(lambda (x)
(f (f x))))
(define (compose f g)
(lambda (x) (f (g x))))
(define (repeated f n)
(if (= n 0)
(lambda (x) x)
(lambda (x)
(define (iter result i)
(if (> i n)
result
(iter (f result) (inc i))))
(iter x 1))))
(define (average-damp f n)
(lambda (guess)
(let ((next (f guess)))
((repeated
(lambda (g) (average guess g))
n) next))))
;; math
(define (sum term a next b)
(define (iter a result)
(if (> a b)
result
(iter (next a) (+ result (term a)))))
(iter a 0))
(define (product term a next b)
(define (iter result a)
(if (> a b)
result
(iter (* (term a) result) (next a))))
(iter 1 a))
(define (smoother dx)
(lambda (f)
(lambda (x)
(/ (+ (f (- x dx)) (f x) (f (+ x dx))) 3))))
(define (deriver dx)
(lambda (f)
(lambda (x)
(/ (- (f (+ x dx)) (f x))
dx))))
(define (coprimer n)
(lambda (a)
(if (= 1 (gcd a n))
((lambda ()
(println a)
true))
false)))
(define (fixed-point f first-guess)
((iterative-improve
(close-enough? 0.0001)
f)
first-guess))
(define (golden-ratio)
(fixed-point
(lambda (x) (+ 1 (/ 1 x)))
1.0))
(define (simpson f lower upper n)
(define h (/ (- upper lower) n))
(define (nth-term k)
(f (+ lower (* k h))))
(define (term k)
(cond
((= k 0) (f lower))
((= k upper) (f upper))
((even? k) (* 2 (nth-term k)))
(else (* 4 (nth-term k)))))
(* (/ h 3.0)
(sum term lower inc n)))
(define (expmoder signal)
(define (expmod base e m)
(cond
((= e 0) 1)
((even? e)
(signal base e m (remainder (square (expmod base (/ e 2) m)) m)))
(else
(remainder (* base (expmod base (- e 1) m)) m))))
expmod)
(define (fermat? a n)
(= ((expmoder (lambda (b e m x) x)) a n n) a))
(define (all-fermat n)
(define (f a n)
(cond
((= a 0) true)
((fermat? (- a 1) n) (f (- a 1) n))
(else false)))
(f n n))
(define (miller-raban-test a n)
(define (signal-mr b e m x)
(cond
((= e (- m 1)) x) ;; end result
((= b (- m 1)) x) ;; base squared wil result in trivial root
((= x 1) 0) ;; non-trivial root
(else x))) ;; no root found
(= ((expmoder signal-mr) a (- n 1) n) 1))
(define (all-miller-raban n)
(define (iter a n)
(cond
((<= a 2) true)
((miller-raban-test (- a 1) n) (iter (- a 1) n))
(else false)))
(iter n n))
|