blob: c6f7b683b8e7b6a632d3401c03380d9a9da8bf47 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
#lang racket
(require "../../shared/data-directed-programming.rkt")
(require "../../shared/lists.rkt")
(require "./78/scheme-number.rkt")
(require "./78/install-rational-package.rkt")
(require "./78/install-complex-package.rkt")
;; We are basically making a data directed framework for arithmethic operations in this module
(define pkg (make-dispatch-table))
(define put (putter pkg))
(define get (getter pkg))
(define print-tbl (printer pkg))
(define coercion (make-dispatch-table))
(define put-coercion (putter coercion))
(define get-coercion (getter coercion))
(define print-coercion (printer coercion))
(define apply-generic (make-apply get))
(define apply-coercion (make-apply-with-coercion get get-coercion))
;; stores integers as exact racket integers
(define (install-integer put get)
;; local methods
(define (tagme datum)
(attach-tag 'integer datum))
(define (make i)
(inexact->exact (round i)))
(define (raiseme i)
(if (equal? (type-tag i) 'integer)
((get 'make 'rational) i 1)
(error "cannot raise non integer in integer package")))
;; constructor
(put 'make 'integer (lambda (x) (tagme (make x))))
;; methods
(put 'add '(integer integer) (lambda (x y) (tagme (make (+ x y)))))
(put 'sub '(integer integer) (lambda (x y) (tagme (make (- x y)))))
(put 'mul '(integer integer) (lambda (x y) (tagme (make (* x y)))))
(put 'div '(integer integer) (lambda (x y) (tagme (make (/ x y)))))
(put 'raise '(integer) raiseme)
;; predicates
(put 'equ? '(integer integer) (lambda (x y) (= x y)))
(put '=zero? '(integer) (lambda (x) (= 0 x)))
'done)
;; stores rationals as custom data object
(define (install-rational put get)
;; local methods
(define (tagme x) (attach-tag 'rational x))
(define (numer x) (car x))
(define (denom x) (cdr x))
(define (add-rat x y)
(make-rat (+ (* (numer x) (denom y))
(* (numer y) (denom x)))
(* (denom x) (denom y))))
(define (sub-rat x y)
(make-rat (- (* (numer x) (denom y))
(* (numer y) (denom x)))
(* (denom x) (denom y))))
(define (mul-rat x y)
(make-rat (* (numer x) (numer y))
(* (denom x) (denom y))))
(define (div-rat x y)
(make-rat (* (numer x) (denom y))
(* (denom x) (numer y))))
(define (equ? x y)
(and (= (numer x) (numer y))
(= (denom x) (denom y))))
(define (=zero? x)
(equal? (numer x) 0))
(define (make-rat n d)
(define (sign x)
(cond
((and (< x 0) (< d 0)) (* -1 x))
((and (< 0 x) (< d 0)) (* -1 x))
(else x)))
(let ((g (gcd n d)))
(cons (sign (/ n g)) (abs (/ d g)))))
(define (raiseme rat)
((get 'make 'real) (/ (numer rat) (denom rat))))
;; constructor
(put 'make 'rational
(lambda (x y) (tagme (make-rat x y))))
;; interface
(put 'add '(rational rational)
(lambda (x y) (tagme (add-rat x y))))
(put 'sub '(rational rational)
(lambda (x y) (tagme (sub-rat x y))))
(put 'mul '(rational rational)
(lambda (x y) (tagme (mul-rat x y))))
(put 'div '(rational rational)
(lambda (x y) (tagme (div-rat x y))))
(put 'raise '(rational) raiseme)
(put 'project '(rational) (lambda (rat)
((get 'make 'integer) (/ (numer rat) (denom rat)))))
;; predicates
(put 'equ? '(rational rational)
(lambda (x y) (equ? x y)))
(put '=zero? '(rational)
(lambda (x) (=zero? x)))
'done)
;; stores reals as inexact racket numbers
(define (install-real put get)
;; local methods
(define (tagme datum)
(attach-tag 'real datum))
(define (make i)
(exact->inexact i))
(define (raiseme r)
((get 'make-from-real-imag 'complex) r 0))
;; constructor
(put 'make 'real (lambda (x) (tagme (make x))))
;; methods
(put 'add '(real real) (lambda (x y) (tagme (make (+ x y)))))
(put 'sub '(real real) (lambda (x y) (tagme (make (- x y)))))
(put 'mul '(real real) (lambda (x y) (tagme (make (* x y)))))
(put 'div '(real real) (lambda (x y) (tagme (make (/ x y)))))
(put 'raise '(real) raiseme)
(put 'project '(real) (lambda (n)
((get 'make 'rational) (round n) 1)))
;; predicates
(put 'equ? '(real real) (lambda (x y) (= x y)))
(put '=zero? '(real) (lambda (x) (= 0 x)))
'done)
;; stores complex numbers as custom data type
(install-integer put get)
(install-rational put get)
(install-real put get)
;; use from previous exercise
(install-complex-package apply-generic get put)
(put 'project '(complex) (lambda (z)
((get 'make 'real) (apply-generic 'real-part z))))
;; test running
;; integer
(define (make-integer n)
((get 'make 'integer) n))
(define test-num (make-integer 3))
;; rational
(define (make-rat n d)
((get 'make 'rational) n d))
(define test-rat (make-rat 5 2))
;; real
(define (make-real n)
((get 'make 'real) n))
(define test-real (make-real 1.5))
;; complex
(define (make-complex x y)
((get 'make-from-real-imag 'complex) x y))
(define test-complex (make-complex 1 2))
(define (raisetower datum)
(apply-coercion 'raise datum))
;; ((lambda ()
;; (display test-num)
;; (newline)
;; (display test-rat)
;; (newline)
;; (display test-real)
;; (newline)
;; (display test-complex)
;; (newline)
;; (display (raisetower 1))
;; (newline)
;; (display (raisetower test-rat))
;; (newline)
;; (display (raisetower test-real))
;; (newline)))
;; 84
(define (type-match? args)
(not (find-first (lambda (x)
(not (equal? (type-tag x)
(type-tag (car args)))))
args)))
(define (count-raises-until-top apply-generic datum)
(define (iter i raised)
(let ((result (apply-generic 'raise raised)))
(if result
(iter (+ i 1) result)
i)))
(iter 0 datum))
(define (highest-type apply-generic items)
(cdr
(foldl
(lambda (raises item result)
(cond ((< (car result) 0) (cons raises item))
((< raises (car result)) (cons raises item))
(else result)))
(cons -1 'nil)
(map (lambda (x)
(count-raises-until-top apply-generic x))
items)
(map type-tag items))))
(define (raise-until apply-generic type datum)
(cond ((equal? type (type-tag datum)) datum)
(else (let ((result (apply-generic 'raise datum)))
(if result
(raise-until apply-generic type result)
false)))))
(define (raise-until-type-match apply-generic type items)
(cond ((null? items) '())
(else (let ((result (raise-until apply-generic type (car items))))
(if result
(cons result (raise-until-type-match apply-generic type (cdr items)))
(error "Could not raise type --" (list type items)))))))
; (raise-until-type-match (make-apply-pred get)
; (highest-type (make-apply-pred get) (list 1 test-complex))
; (list 1 test-complex)))))))
(define (make-apply-with-raising apply-generic get)
(lambda (op . args)
(let ((result (apply apply-generic (cons op args))))
(if result
result
(let ((raised-args (raise-until-type-match apply-generic (highest-type apply-generic args) args)))
(let ((raised-result (apply apply-generic (cons op raised-args))))
(if raised-result
raised-result
(error "Could not apply --" (list op args raised-args)))))))))
(define apply-with-raising (make-apply-with-raising (make-apply-pred get) get))
((lambda ()
(newline)
(apply-with-raising 'add 1 test-complex)))
;; 85
;; lowerable?
(define (project datum)
(apply-generic 'project datum))
(project test-complex)
(project 1.5)
(project test-rat)
(define (equ? d1 d2)
(apply-generic 'equ? d1 d2))
(define (can-drop? datum)
(equ? (raisetower (project datum))
datum))
(define (towerdrop datum)
(cond ((and (get 'project (list (type-tag datum)))
(can-drop? datum))
(towerdrop (project datum)))
(else datum)))
(towerdrop (make-complex 1 1))
(define (make-apply-with-raising-and-drop apply-generic get)
(lambda (op . args)
(let ((result (apply apply-generic (cons op args))))
(if result
(towerdrop result)
(let ((raised-args (raise-until-type-match apply-generic (highest-type apply-generic args) args)))
(let ((raised-result (apply apply-generic (cons op raised-args))))
(if raised-result
(towerdrop raised-result)
(error "Could not apply --" (list op args raised-args)))))))))
(define apply-and-drop (make-apply-with-raising-and-drop (make-apply-pred get) get))
(apply-and-drop 'add
1.0
(make-complex 1 0))
|