summaryrefslogtreecommitdiff
path: root/shared/sets.rkt
diff options
context:
space:
mode:
Diffstat (limited to 'shared/sets.rkt')
-rw-r--r--shared/sets.rkt108
1 files changed, 108 insertions, 0 deletions
diff --git a/shared/sets.rkt b/shared/sets.rkt
new file mode 100644
index 0000000..e20ba7f
--- /dev/null
+++ b/shared/sets.rkt
@@ -0,0 +1,108 @@
+#lang racket
+;; implements convential interfaces on sets represented as binary trees
+(provide
+ entry
+ left-branch
+ right-branch
+ make-entry
+ element-of-set?
+ adjoin-set
+ tree->list
+ list->tree
+ union-set
+ intersection-set)
+
+(define (entry tree) (car tree))
+(define (left-branch tree) (cadr tree))
+(define (right-branch tree) (caddr tree))
+(define (make-entry entry left right)
+ (list entry left right))
+
+(define (element-of-set? x mset)
+ (cond ((null? mset) false)
+ ((= x (entry mset)) true)
+ ((> x (entry mset))
+ (element-of-set? (right-branch mset)))
+ ((< x (entry mset))
+ (element-of-set? (left-branch mset)))))
+
+(define (adjoin-set x mset)
+ (cond ((null? mset) (make-entry x '() '()))
+ ((= x (entry mset)) mset)
+ ((< x (entry mset))
+ (make-entry
+ (entry mset)
+ (adjoin-set x (left-branch mset))
+ (right-branch mset)))
+ ((> x (entry mset))
+ (make-entry
+ (entry mset)
+ (left-branch mset)
+ (adjoin-set x (right-branch mset))))))
+
+(define (tree->list tree)
+ (define (copy-to-list t result-list)
+ (if (null? t)
+ result-list
+ (copy-to-list (left-branch t)
+ (cons (entry t)
+ (copy-to-list (right-branch t)
+ result-list)))))
+ (copy-to-list tree '()))
+
+
+(define (list->tree elements)
+ (car (partial-tree elements (length elements))))
+
+(define (partial-tree elts n)
+ (if (= n 0)
+ (cons '() elts)
+ (let ((left-size (quotient (- n 1) 2)))
+ (let ((left-result (partial-tree elts left-size)))
+ (let ((left-tree (car left-result))
+ (non-left-elts (cdr left-result))
+ (right-size (- n (+ left-size 1))))
+ (let ((this-entry (car non-left-elts))
+ (right-result (partial-tree (cdr non-left-elts)
+ right-size)))
+ (let ((right-tree (car right-result))
+ (remaining-elts (cdr right-result)))
+ (cons (make-entry this-entry left-tree right-tree)
+ remaining-elts))))))))
+
+;; 2*O(n) + O(n) + O(n)
+(define (union-set s1 s2)
+ (define (ordered-list-union-set set1 set2)
+ (cond
+ ((and (null? set1) (null? set2)) '())
+ ((null? set1) (cons (car set2) (ordered-list-union-set set1 (cdr set2))))
+ ((null? set2) (cons (car set1) (ordered-list-union-set (cdr set1) set2)))
+ ((= (car set1) (car set2)) (cons (car set2) (ordered-list-union-set (cdr set1) (cdr set2))))
+ ((> (car set1) (car set2)) (cons (car set2) (ordered-list-union-set set1 (cdr set2))))
+ ((< (car set1) (car set2)) (cons (car set1) (ordered-list-union-set (cdr set1) set2)))))
+ (list->tree
+ (ordered-list-union-set (tree->list s1) (tree->list s2))))
+
+;; 2*O(n) + O(n) + O(n)
+(define (intersection-set set1 set2)
+ (define (ordered-list-intersection-set s1 s2)
+ (if (or (null? s1) (null? s2))
+ '()
+ (let ((x1 (car s1)) (x2 (car s2)))
+ (cond ((= x1 x2)
+ (cons x1
+ (ordered-list-intersection-set
+ (cdr s1)
+ (cdr s2))))
+ ((< x1 x2)
+ (ordered-list-intersection-set
+ (cdr s1)
+ s2))
+ ((> x1 x2)
+ (ordered-list-intersection-set
+ s1
+ (cdr s2)))))))
+ (list->tree
+ (ordered-list-intersection-set
+ (tree->list set1) (tree->list set2))))
+