1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
#ifndef hash_map_hh_INCLUDED
#define hash_map_hh_INCLUDED
#include "hash.hh"
#include "memory.hh"
#include "vector.hh"
namespace Kakoune
{
template<typename T>
constexpr void constexpr_swap(T& lhs, T& rhs)
{
T tmp = std::move(lhs);
lhs = std::move(rhs);
rhs = std::move(tmp);
}
template<MemoryDomain domain,
template<typename, MemoryDomain> class Container>
struct HashIndex
{
struct Entry
{
size_t hash = 0;
int index = -1;
};
static constexpr float max_fill_rate = 0.5f;
constexpr HashIndex() = default;
constexpr HashIndex(size_t count)
{
const size_t min_size = (size_t)(count / max_fill_rate) + 1;
size_t new_size = 4;
while (new_size < min_size)
new_size *= 2;
m_entries.resize(new_size);
}
using ContainerType = Container<Entry, domain>;
constexpr void resize(size_t new_size)
{
kak_assert(new_size > m_entries.size());
ContainerType old_entries = std::move(m_entries);
m_entries.resize(new_size);
for (auto& entry : old_entries)
{
if (entry.index >= 0)
add(entry.hash, entry.index);
}
}
constexpr void reserve(size_t count)
{
if (count == 0)
return;
const size_t min_size = (size_t)(count / max_fill_rate) + 1;
size_t new_size = m_entries.empty() ? 4 : m_entries.size();
while (new_size < min_size)
new_size *= 2;
if (new_size > m_entries.size())
resize(new_size);
}
constexpr void add(size_t hash, int index)
{
Entry entry{hash, index};
while (true)
{
auto target_slot = compute_slot(entry.hash);
for (auto slot = target_slot; slot < m_entries.size(); ++slot)
{
if (m_entries[slot].index < 0)
{
m_entries[slot] = entry;
return;
}
// Robin hood hashing
auto candidate_slot = compute_slot(m_entries[slot].hash);
if (target_slot < candidate_slot)
{
constexpr_swap(m_entries[slot], entry);
target_slot = candidate_slot;
}
}
// no free entries found, resize, try again
resize(m_entries.size() * 2);
}
}
constexpr void remove(size_t hash, int index)
{
for (auto slot = compute_slot(hash); slot < m_entries.size(); ++slot)
{
kak_assert(m_entries[slot].index >= 0);
if (m_entries[slot].index == index)
{
m_entries[slot].index = -1;
// Recompact following entries
for (auto next = slot+1; next < m_entries.size(); ++next)
{
if (m_entries[next].index < 0 or
compute_slot(m_entries[next].hash) == next)
break;
kak_assert(compute_slot(m_entries[next].hash) < next);
constexpr_swap(m_entries[next-1], m_entries[next]);
}
break;
}
}
}
constexpr void ordered_fix_entries(int index)
{
for (auto& entry : m_entries)
{
if (entry.index >= index)
--entry.index;
}
}
constexpr void unordered_fix_entries(size_t hash, int old_index, int new_index)
{
for (auto slot = compute_slot(hash); slot < m_entries.size(); ++slot)
{
if (m_entries[slot].index == old_index)
{
m_entries[slot].index = new_index;
return;
}
}
kak_assert(false); // entry not found ?!
}
constexpr const Entry& operator[](size_t index) const { return m_entries[index]; }
constexpr size_t size() const { return m_entries.size(); }
constexpr size_t compute_slot(size_t hash) const
{
// We assume entries.size() is power of 2
return hash & (m_entries.size()-1);
}
constexpr void clear() { m_entries.clear(); }
private:
ContainerType m_entries;
};
template<typename Key, typename Value>
struct HashItem
{
Key key{};
Value value{};
friend bool operator==(const HashItem&, const HashItem&) = default;
};
template<typename Key>
struct HashItem<Key, void>
{
Key key;
friend bool operator==(const HashItem&, const HashItem&) = default;
};
template<typename Key, typename Value,
MemoryDomain domain = MemoryDomain::Undefined,
template<typename, MemoryDomain> class Container = Vector,
bool multi_key = false>
struct HashMap
{
static constexpr bool has_value = not std::is_void_v<Value>;
using Item = std::conditional_t<has_value, HashItem<Key, Value>, Key>;
using EffectiveValue = std::conditional_t<has_value, Value, const Key>;
using ContainerType = Container<Item, domain>;
constexpr HashMap() = default;
constexpr HashMap(std::initializer_list<Item> val) : m_items(val), m_index(val.size())
{
for (int i = 0; i < m_items.size(); ++i)
m_index.add(hash_value(m_items[i].key), i);
}
template<typename Iterator>
constexpr HashMap(Iterator begin, Iterator end)
{
while (begin != end)
insert(*begin++);
}
constexpr EffectiveValue& insert(Item item, size_t hash)
{
kak_assert(hash == hash_value(item_key(item)));
if constexpr (not multi_key)
{
if (auto index = find_index(item_key(item), hash); index >= 0)
{
m_items[index] = std::move(item);
return item_value(m_items[index]);
}
}
m_index.reserve(m_items.size()+1);
m_index.add(hash, (int)m_items.size());
m_items.push_back(std::move(item));
return item_value(m_items.back());
}
constexpr EffectiveValue& insert(Item item)
{
const auto hash = hash_value(item_key(item));
return insert(std::move(item), hash);
}
template<typename KeyType> requires IsHashCompatible<Key, KeyType>
constexpr int find_index(const KeyType& key, size_t hash) const
{
for (auto slot = m_index.compute_slot(hash); slot < m_index.size(); ++slot)
{
auto& entry = m_index[slot];
if (entry.index < 0)
return -1;
if (entry.hash == hash and item_key(m_items[entry.index]) == key)
return entry.index;
}
return -1;
}
template<typename KeyType> requires IsHashCompatible<Key, KeyType>
constexpr int find_index(const KeyType& key) const { return find_index(key, hash_value(key)); }
template<typename KeyType> requires IsHashCompatible<Key, KeyType>
constexpr bool contains(const KeyType& key) const { return find_index(key) >= 0; }
template<typename KeyType> requires IsHashCompatible<Key, std::remove_cvref_t<KeyType>>
constexpr EffectiveValue& operator[](KeyType&& key)
{
const auto hash = hash_value(key);
auto index = find_index(key, hash);
if (index >= 0)
return item_value(m_items[index]);
m_index.reserve(m_items.size()+1);
m_index.add(hash, (int)m_items.size());
m_items.push_back({Key(std::forward<KeyType>(key))});
return item_value(m_items.back());
}
template<typename KeyType> requires IsHashCompatible<Key, std::remove_cvref_t<KeyType>>
constexpr const EffectiveValue& get(KeyType&& key) const
{
return const_cast<HashMap&>(*this).get(key);
}
template<typename KeyType> requires IsHashCompatible<Key, std::remove_cvref_t<KeyType>>
constexpr EffectiveValue& get(KeyType&& key)
{
const auto hash = hash_value(key);
auto index = find_index(key, hash);
kak_assert(index >= 0);
return item_value(m_items[index]);
}
template<typename KeyType> requires IsHashCompatible<Key, KeyType>
constexpr void remove(const KeyType& key)
{
const auto hash = hash_value(key);
int index = find_index(key, hash);
if (index >= 0)
{
m_items.erase(m_items.begin() + index);
m_index.remove(hash, index);
m_index.ordered_fix_entries(index);
}
}
template<typename KeyType> requires IsHashCompatible<Key, KeyType>
constexpr void unordered_remove(const KeyType& key)
{
const auto hash = hash_value(key);
int index = find_index(key, hash);
if (index >= 0)
{
constexpr_swap(m_items[index], m_items.back());
m_items.pop_back();
m_index.remove(hash, index);
if (index != m_items.size())
m_index.unordered_fix_entries(hash_value(item_key(m_items[index])), m_items.size(), index);
}
}
template<typename KeyType> requires IsHashCompatible<Key, KeyType>
constexpr void erase(const KeyType& key) { unordered_remove(key); }
template<typename KeyType> requires IsHashCompatible<Key, KeyType>
constexpr void remove_all(const KeyType& key)
{
const auto hash = hash_value(key);
for (int index = find_index(key, hash); index >= 0;
index = find_index(key, hash))
{
m_items.erase(m_items.begin() + index);
m_index.remove(hash, index);
m_index.ordered_fix_entries(index);
}
}
using iterator = typename ContainerType::iterator;
constexpr iterator begin() { return m_items.begin(); }
constexpr iterator end() { return m_items.end(); }
using const_iterator = typename ContainerType::const_iterator;
constexpr const_iterator begin() const { return m_items.begin(); }
constexpr const_iterator end() const { return m_items.end(); }
Item& item(size_t index) { return m_items[index]; }
const Item& item(size_t index) const { return m_items[index]; }
template<typename KeyType> requires IsHashCompatible<Key, KeyType>
constexpr iterator find(const KeyType& key)
{
auto index = find_index(key);
return index >= 0 ? begin() + index : end();
}
template<typename KeyType> requires IsHashCompatible<Key, KeyType>
constexpr const_iterator find(const KeyType& key) const
{
return const_cast<HashMap*>(this)->find(key);
}
constexpr void remove(const const_iterator& it)
{
auto index = it - m_items.begin();
const auto hash = hash_value(it->key);
m_index.remove(hash, index);
m_items.erase(it);
m_index.ordered_fix_entries(index);
}
constexpr void clear() { m_items.clear(); m_index.clear(); }
constexpr size_t size() const { return m_items.size(); }
constexpr bool empty() const { return m_items.empty(); }
constexpr void reserve(size_t size)
{
m_items.reserve(size);
m_index.reserve(size);
}
// Equality is taking the order of insertion into account
template<MemoryDomain otherDomain>
constexpr bool operator==(const HashMap<Key, Value, otherDomain, Container>& other) const
{
return size() == other.size() and std::equal(begin(), end(), other.begin());
}
private:
static auto& item_value(auto& item)
{
if constexpr (has_value) { return item.value; } else { return item; }
}
static const Key& item_key(const Item& item)
{
if constexpr (has_value) { return item.key; } else { return item; }
}
ContainerType m_items;
HashIndex<domain, Container> m_index;
};
template<typename Key, typename Value,
MemoryDomain domain = MemoryDomain::Undefined,
template<typename, MemoryDomain> class Container = Vector>
using MultiHashMap = HashMap<Key, Value, domain, Container, true>;
template<typename Value,
MemoryDomain domain = MemoryDomain::Undefined,
template<typename, MemoryDomain> class Container = Vector>
using HashSet = HashMap<Value, void, domain, Container>;
template<typename Value,
MemoryDomain domain = MemoryDomain::Undefined,
template<typename, MemoryDomain> class Container = Vector>
using MultiHashSet = HashMap<Value, void, domain, Container, true>;
void profile_hash_maps();
}
#endif // hash_map_hh_INCLUDED
|