summaryrefslogtreecommitdiff
path: root/src/event_manager.cc
blob: 01838de6e5527b40035835908b10ac855d9adb1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#include "event_manager.hh"

#include "flags.hh"
#include "ranges.hh"

#if defined(__sun__)
#include <cstring>
#endif

#include <unistd.h>

namespace Kakoune
{

FDWatcher::FDWatcher(int fd, FdEvents events, EventMode mode, Callback callback)
    : m_fd{fd}, m_events{events}, m_mode{mode}, m_callback{std::move(callback)}
{
    EventManager::instance().m_fd_watchers.push_back(this);
}

FDWatcher::~FDWatcher()
{
    unordered_erase(EventManager::instance().m_fd_watchers, this);
}

void FDWatcher::run(FdEvents events, EventMode mode)
{
    m_callback(*this, events, mode);
}

void FDWatcher::close_fd()
{
    if (m_fd != -1)
    {
        close(m_fd);
        m_fd = -1;
    }
}

Timer::Timer(TimePoint date, Callback callback, EventMode mode)
    : m_date{date}, m_mode(mode), m_callback{std::move(callback)}
{
    if (m_callback and EventManager::has_instance())
        EventManager::instance().m_timers.push_back(this);
}

Timer::~Timer()
{
    if (m_callback and EventManager::has_instance())
        unordered_erase(EventManager::instance().m_timers, this);
}

void Timer::run(EventMode mode)
{
    kak_assert(m_callback);
    if (mode == m_mode)
    {
        m_date = TimePoint::max();
        m_callback(*this);
    }
    else // try again a little later
        m_date = Clock::now() + std::chrono::milliseconds{10};
}

EventManager::EventManager()
{
    FD_ZERO(&m_forced_fd);
}

EventManager::~EventManager()
{
    kak_assert(m_fd_watchers.empty());
    kak_assert(m_timers.empty());
}

bool EventManager::handle_next_events(EventMode mode, sigset_t* sigmask, Optional<Nanoseconds> timeout)
{
    int max_fd = 0;
    fd_set rfds, wfds, efds;
    FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&efds);
    for (auto& watcher : m_fd_watchers)
    {
        if (watcher->mode() == EventMode::Normal and mode == EventMode::Urgent)
            continue;

        const int fd = watcher->fd();
        if (fd == -1)
            continue;

        max_fd = std::max(fd, max_fd);
        auto events = watcher->events();
        if (events & FdEvents::Read)
            FD_SET(fd, &rfds);
        if (events & FdEvents::Write)
            FD_SET(fd, &wfds);
        if (events & FdEvents::Except)
            FD_SET(fd, &efds);
    }

    if (m_has_forced_fd)
        timeout.reset();

    if (not m_timers.empty())
    {
        auto next_date = (*std::min_element(
            m_timers.begin(), m_timers.end(), [](Timer* lhs, Timer* rhs) {
                return lhs->next_date() < rhs->next_date();
        }))->next_date();

        if (next_date != TimePoint::max())
        {
            auto remaining = std::max(Nanoseconds(0),
                                      std::chrono::duration_cast<Nanoseconds>(next_date - Clock::now()));
            timeout = timeout ? std::min(*timeout, remaining) : remaining;
        }
    }
    auto ts = timeout.map([](auto nsecs) {
        auto secs = std::chrono::duration_cast<std::chrono::seconds>(nsecs);
        return timespec{(time_t)secs.count(), (long)(nsecs - secs).count()};
    });
    int res = pselect(max_fd + 1, &rfds, &wfds, &efds, ts ? &*ts : nullptr, sigmask);

    // copy forced fds *after* select, so that signal handlers can write to
    // m_forced_fd, interupt select, and directly be serviced.
    m_has_forced_fd = false;
    fd_set forced = m_forced_fd;
    FD_ZERO(&m_forced_fd);

    for (int fd = 0; fd < max_fd + 1; ++fd)
    {
        auto events =  FD_ISSET(fd, &forced) ? FdEvents::Read : FdEvents::None;
        if (res > 0)
            events |= (FD_ISSET(fd, &rfds) ? FdEvents::Read : FdEvents::None) |
                      (FD_ISSET(fd, &wfds) ? FdEvents::Write : FdEvents::None) |
                      (FD_ISSET(fd, &efds) ? FdEvents::Except : FdEvents::None);

        if (events != FdEvents::None)
        {
            auto it = find_if(m_fd_watchers,
                              [fd](const FDWatcher* w){return w->fd() == fd; });
            if (it != m_fd_watchers.end())
                (*it)->run(events, mode);
        }
    }

    TimePoint now = Clock::now();
    auto timers = m_timers; // copy timers in case m_timers gets mutated
    for (auto& timer : timers)
    {
        if (contains(m_timers, timer) and timer->next_date() <= now)
            timer->run(mode);
    }

    return res > 0;
}

void EventManager::force_signal(int fd)
{
    FD_SET(fd, &m_forced_fd);
    m_has_forced_fd = true;
}

void EventManager::handle_urgent_events()
{
    if (has_instance())
        instance().handle_next_events(EventMode::Urgent, nullptr, Nanoseconds{});
}


SignalHandler set_signal_handler(int signum, SignalHandler handler)
{
    struct sigaction new_action, old_action;

    sigemptyset(&new_action.sa_mask);
    new_action.sa_handler = handler;
    new_action.sa_flags = SA_RESTART;
    sigaction(signum, &new_action, &old_action);
    return old_action.sa_handler;
}

}