1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
#ifndef diff_hh_INCLUDED
#define diff_hh_INCLUDED
// Implementation of the linear space variant of the algorithm described in
// "An O(ND) Difference Algorithm and Its Variations"
// (http://xmailserver.org/diff2.pdf)
#include "array_view.hh"
#include "vector.hh"
#include <functional>
#include <iterator>
namespace Kakoune
{
struct Snake
{
int x, y, u, v;
enum Op { Add, Del, RevAdd, RevDel } op;
};
template<typename Iterator, typename Equal>
Snake find_end_snake_of_further_reaching_dpath(Iterator a, int N, Iterator b, int M,
const int* V, const int D, const int k, Equal eq)
{
const bool add = k == -D or (k != D and V[k-1] < V[k+1]);
// if diagonal on the right goes further along x than diagonal on the left,
// then we take a vertical edge from it to this diagonal, hence x = V[k+1]
// else, we take an horizontal edge from our left diagonal,x = V[k-1]+1
const int x = add ? V[k+1] : V[k-1]+1;
// we are by construction on diagonal k, so our position along b (y) is x - k.
const int y = x - k;
int u = x, v = y;
// follow end snake along diagonal k
while (u < N and v < M and eq(a[u], b[v]))
++u, ++v;
return { x, y, u, v, add ? Snake::Add : Snake::Del };
}
template<typename Iterator, typename Equal>
Snake find_middle_snake(Iterator a, int N, Iterator b, int M,
int* V1, int* V2, int cost_limit, Equal eq)
{
const int delta = N - M;
V1[1] = 0;
V2[1] = 0;
std::reverse_iterator<Iterator> ra{a + N}, rb{b + M};
const int max_D = std::min((M + N + 1) / 2 + 1, cost_limit);
for (int D = 0; D < max_D; ++D)
{
for (int k1 = -D; k1 <= D; k1 += 2)
{
auto p = find_end_snake_of_further_reaching_dpath(a, N, b, M, V1, D, k1, eq);
V1[k1] = p.u;
const int k2 = -(k1 - delta);
if ((delta % 2 != 0) and -(D-1) <= k2 and k2 <= (D-1) and V1[k1] + V2[k2] >= N)
return p;// return last snake on forward path, len = (2 * D - 1)
}
for (int k2 = -D; k2 <= D; k2 += 2)
{
auto p = find_end_snake_of_further_reaching_dpath(ra, N, rb, M, V2, D, k2, eq);
V2[k2] = p.u;
const int k1 = -(k2 - delta);
if ((delta % 2 == 0) and -D <= k1 and k1 <= D and V1[k1] + V2[k2] >= N)
return { N - p.u, M - p.v, N - p.x , M - p.y,
(Snake::Op)(p.op + Snake::RevAdd) };// return last snake on reverse path, len = 2 * D
}
}
// We did not find a minimal path in less than max_D iterations, iterate one more time finding the best
Snake best{};
for (int k1 = -max_D; k1 <= max_D; k1 += 2)
{
auto p = find_end_snake_of_further_reaching_dpath(a, N, b, M, V1, max_D, k1, eq);
V1[k1] = p.u;
if ((delta % 2 != 0) and p.u + p.v >= best.u + best.v and p.u <= N and p.v <= M)
best = p;
}
for (int k2 = -max_D; k2 <= max_D; k2 += 2)
{
auto p = find_end_snake_of_further_reaching_dpath(ra, N, rb, M, V2, max_D, k2, eq);
V2[k2] = p.u;
if ((delta % 2 == 0) and p.u + p.v >= best.u + best.v and p.u <= N and p.v <= M)
best = {p.x, p.y, p.u, p.v, (Snake::Op)(p.op + Snake::RevAdd)};
}
if (best.op >= Snake::RevAdd)
best = { N - best.u, M - best.v, N - best.x , M - best.y, best.op };
return best;
}
struct Diff
{
enum { Keep, Add, Remove } mode;
int len;
int posB;
};
inline void append_diff(Vector<Diff>& diffs, Diff diff)
{
if (diff.len == 0)
return;
if (not diffs.empty() and diffs.back().mode == diff.mode
and (diff.mode != Diff::Add or
diffs.back().posB + diffs.back().len == diff.posB))
diffs.back().len += diff.len;
else
diffs.push_back(diff);
}
template<typename Iterator, typename Equal>
void find_diff_rec(Iterator a, int begA, int endA,
Iterator b, int begB, int endB,
int* V1, int* V2, int cost_limit,
Equal eq, Vector<Diff>& diffs)
{
int prefix_len = 0;
while (begA != endA and begB != endB and eq(a[begA], b[begB]))
++begA, ++begB, ++prefix_len;
int suffix_len = 0;
while (begA != endA and begB != endB and eq(a[endA-1], b[endB-1]))
--endA, --endB, ++suffix_len;
append_diff(diffs, {Diff::Keep, prefix_len, 0});
const auto lenA = endA - begA, lenB = endB - begB;
if (lenA == 0)
append_diff(diffs, {Diff::Add, lenB, begB});
else if (lenB == 0)
append_diff(diffs, {Diff::Remove, lenA, 0});
else
{
auto snake = find_middle_snake(a + begA, lenA, b + begB, lenB, V1, V2, cost_limit, eq);
kak_assert(snake.u <= lenA and snake.v <= lenB);
find_diff_rec(a, begA, begA + snake.x - (int)(snake.op == Snake::Del),
b, begB, begB + snake.y - (int)(snake.op == Snake::Add),
V1, V2, cost_limit, eq, diffs);
if (snake.op == Snake::Add)
append_diff(diffs, {Diff::Add, 1, begB + snake.y - 1});
if (snake.op == Snake::Del)
append_diff(diffs, {Diff::Remove, 1, 0});
append_diff(diffs, {Diff::Keep, snake.u - snake.x, 0});
if (snake.op == Snake::RevAdd)
append_diff(diffs, {Diff::Add, 1, begB + snake.v});
if (snake.op == Snake::RevDel)
append_diff(diffs, {Diff::Remove, 1, 0});
find_diff_rec(a, begA + snake.u + (int)(snake.op == Snake::RevDel), endA,
b, begB + snake.v + (int)(snake.op == Snake::RevAdd), endB,
V1, V2, cost_limit, eq, diffs);
}
append_diff(diffs, {Diff::Keep, suffix_len, 0});
}
template<typename Iterator, typename Equal = std::equal_to<>>
Vector<Diff> find_diff(Iterator a, int N, Iterator b, int M, Equal eq = Equal{})
{
const int max = 2 * (N + M) + 1;
Vector<int> data(2*max);
Vector<Diff> diffs;
constexpr int cost_limit = 1000;
find_diff_rec(a, 0, N, b, 0, M, &data[N+M], &data[max + N+M], cost_limit, eq, diffs);
return diffs;
}
}
#endif // diff_hh_INCLUDED
|