1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
|
import numpy as np
# import cProfile
# import pstats
# import tqdm
# from tqdm import trange
# from pstats import SortKey
from sklearn import metrics
# age,married,house,income,gender,class
# [(22, 0, 0, 28, 1, 0)
# (46, 0, 1, 32, 0, 0)
# (24, 1, 1, 24, 1, 0)
# (25, 0, 0, 27, 1, 0)
# (29, 1, 1, 32, 0, 0)
# (45, 1, 1, 30, 0, 1)
# (63, 1, 1, 58, 1, 1)
# (36, 1, 0, 52, 1, 1)
# (23, 0, 1, 40, 0, 1)
# (50, 1, 1, 28, 0, 1)]
# In the program data points are called rows
# In the program categorical or numerical attributes are called cols for columns
# The last column are the classes and will be called as classes in the program
class Node:
"""
The node object points to two other Node objects.
"""
def __init__(self, split_value_or_rows=None, col=None):
"""Initialises the column and split value for the node.
/split_value_or_rows=None/ can either be the best split value of
a col, or a boolean mask for x that selects the rows to consider for
calculating the split_value
/col=None/ if the node object has a split_value, then it also has a col
that belongs to this value
"""
self.split_value_or_rows = split_value_or_rows
self.col = col
def add_split(self, left, right):
"""
Lets the node object point to two other objects that can be either Leaf
or Node.
"""
self.left = left
self.right = right
def is_leaf_node(self, node_classes):
"""
is_leaf_node is used to change the col attribute to None to indicate a
leaf node
"""
self.col = None
# This weird numpy line gives the majority vote, which is 1 or 0
self.split_value_or_rows = major_vote(node_classes)
class Tree:
"""
Tree object that points towards the root node.
"""
def __init__(self, root_node_obj, hyper_params):
"""Initialises only by pointing to a Node object.
/root_node_obj/ is a node object that is made before entering the main
loop of tree grow.
"""
self.tree = root_node_obj
self.hyper_params = hyper_params
def predict(self, x):
"""
Makes a list of root nodes, and drops one row of x through the tree per
loop
"""
# Maak een lijst van nodes, wiens indexes overeen komen met de rows in
# x die we willen droppen
rows_to_predict = len(x)
nodes = np.array([self.tree] * rows_to_predict)
predictions = np.zeros(rows_to_predict)
# # De index van de row van x die we in de boom willen droppen
drop = 0
node = nodes[0]
while nodes.size != 0:
node = nodes[0]
if node.col is None:
node = node.split_value_or_rows
predictions[drop] = node
nodes = nodes[1:]
drop += 1
continue
elif x[drop, node.col] > node.split_value_or_rows:
nodes[0] = node.left
else:
nodes[0] = node.right
return predictions
# Work in progress tree printer
#
# def __repr__(self):
# tree_string = ''
# node = self.tree
# depth = 0
# nodelist = [node]
# while nodelist:
# node = nodelist.pop()
# depth += 1
# if node.col is not None:
# left, right = node.left, node.right
# nodelist += [left, right]
# else:
# continue
# tree_string += '\n' + depth * ' '
# tree_string += (depth + 4) * ' ' + '/' + ' ' * 2 + '\\'
# tree_string += '\n' + ' ' * 2 * depth
# for direc in left, right:
# if not direc.split_value_or_rows%10:
# tree_string += ' ' * 4
# else:
# tree_string += ' ' * 3
# tree_string += str(int(direc.split_value_or_rows))
# tree_string = depth * ' ' + str(int(self.tree.split_value_or_rows)) + tree_string
# return tree_string
def major_vote(classes):
"""
@todo: Docstring for major_vote(classes
"""
return np.argmax(np.bincount(classes.astype(int)))
def impurity(array) -> int:
"""
Assumes the argument array is a one dimensional vector of zeroes and ones.
Computes the gini index impurity based on the relative frequency of ones in
the vector.
Example:
>>> array=np.array([1,0,1,1,1,0,0,1,1,0,1])
>>> array
array([1,0,1,1,1,0,0,1,1,0,1])
>>> impurity(array)
0.23140495867768596
"""
n_labels = len(array)
n_labels_1 = array.sum()
rel_freq_1 = n_labels_1 / n_labels
rel_freq_0 = 1 - rel_freq_1
gini_index = rel_freq_1 * rel_freq_0
return gini_index
def bestsplit(x, y, minleaf) -> None:
"""
x = vector of single col
y = vector of classes (last col in x)
Consider splits of type "x <= c" where "c" is the average of two consecutive
values of x in the sorted order.
x and y must be of the same length
y[i] must be the class label of the i-th observation, and x[i] is the
correspnding value of attribute x
Example (best split on income):
>>> bestsplit(credit_data[:,3],credit_data[:,5])
36
"""
x_sorted = np.sort(np.unique(x))
split_points = (x_sorted[:len(x_sorted) - 1] + x_sorted[1:]) / 2
# Hieren stoppen we (delta_i, split_value, rows_left, rows_right)
best_list = []
# Stop wanneer de array met split points leeg is
while split_points.size != 0:
split_value = split_points[-1]
mask_left, mask_right = x > split_value, x <= split_value
classes_left, classes_right = y[mask_left], y[mask_right]
# Kijk of er genoeg rows in de gesplitte nodes terechtkomen, anders
# mogen we de split niet toelaten vanwege de minleaf constraint
if len(classes_left) < minleaf or len(classes_right) < minleaf:
split_points = split_points[:-1]
continue
delta_i = (impurity(classes_left) * len(classes_left) +
impurity(classes_right) * len(classes_right))
# stop huidige splits in de lijst om best split te berekenen
best_list.append((delta_i, mask_left, mask_right, split_value))
# Haal de huidige split_point uit split_points
split_points = split_points[:-1]
# Bereken de best split voor deze x col, als er ten minste 1 bestaat die
# voldoet aan min leaf
if best_list:
return min(best_list, key=lambda x: x[0])
else:
return False
def exhaustive_split_search(rows, classes, minleaf):
"""
@todo: Docstring for exhaustive_split_search
"""
# We hebben enumerate nodig, want we willen weten op welke col (i)
# (age,married,house,income,gender) we een split doen
exhaustive_best_list = []
for i, col in enumerate(rows.transpose()):
col_best_split = bestsplit(col, classes, minleaf)
if col_best_split:
# add for which row we calculated the best split
col_best_split += (i, )
exhaustive_best_list.append(col_best_split)
return exhaustive_best_list
def add_children(node, best_split):
"""
@todo: Docstring for add_children
"""
current_mask = node.split_value_or_rows
mask_left, mask_right, node_split_value, node_col = best_split[1:]
# Give the current node the split_value and col it needs for predictions
node.split_value_or_rows, node.col = node_split_value, node_col
# Updating the row masks to give it to children, keeping numpy dimension consistent
mask_left, mask_right = update_mask(mask_left, current_mask), update_mask(
mask_right, current_mask)
# Adding the pointer between parent and children
node.add_split(Node(split_value_or_rows=mask_left),
Node(split_value_or_rows=mask_right))
return [node.left, node.right]
def update_mask(mask, current_mask):
"""
Updates the spit bool array from any dimension to an array with length
equal to the total number of rows in dataset x.
"""
copy = np.array(current_mask, copy=True)
copy[current_mask == True] = mask
return copy
#
#
# Put all helper functions above this comment!
def tree_grow(x=None,
y=None,
nmin=None,
minleaf=None,
nfeat=None,
**defaults) -> Tree:
"""
@todo: Docstring for tree_grow
"""
mask = np.full(len(x), True)
root = Node(split_value_or_rows=mask)
tr = Tree(root, (nmin, minleaf, nfeat))
nodelist = [root]
while nodelist:
node = nodelist.pop()
node_classes = y[node.split_value_or_rows]
if len(node_classes) < nmin:
node.is_leaf_node(node_classes)
continue
if impurity(node_classes) > 0:
node_rows = x[node.split_value_or_rows]
exhaustive_best_list = exhaustive_split_search(
node_rows, node_classes, minleaf)
if not exhaustive_best_list:
node.is_leaf_node(node_classes)
continue
best_split = min(exhaustive_best_list, key=lambda z: z[0])
nodelist += add_children(node, best_split)
else:
# impurity 0
node.is_leaf_node(node_classes)
continue
return tr
def tree_grow_b(x=None,
y=None,
nmin=None,
minleaf=None,
nfeat=None,
m=None,
**defaults) -> Tree:
forest = []
for i in range(m):# ,desc=f'planting a forest, growing {m} trees'):
choice = np.random.randint(len(x),size=len(x))
x_bag, y_bag = x[choice], y[choice]
forest.append(tree_grow(x=x_bag,y=y_bag,nmin=nmin,minleaf=minleaf,nfeat=nfeat))
return forest
def tree_pred(x=None, tr=None, training=None, **defaults) -> np.array:
"""
@todo: Docstring for tree_pred
"""
y = tr.predict(x).astype(float)
nmin, minleaf, nfeat = tr.hyper_params
if training is not None:
# print(np.mean(training == y))
print(
f'Results from: prediction single tree({nmin=}, {minleaf=}, {nfeat=})'
)
print(
f'\t->Confusion matrix:\n{metrics.confusion_matrix(y, training)}')
print(f'\t->Accuracy:\n\t\t{metrics.accuracy_score(y, training)}')
print(f'\t->Precission:\n\t\t{metrics.precision_score(y, training)}')
print(f'\t->Recall:\n\t\t{metrics.recall_score(y, training)}')
return y
def tree_pred_b(x=None, tr=None, training=None, **defaults) -> np.array:
y_bag = np.zeros((len(x), len(tr)))
for i, tree in enumerate(tr): # , total=len(tr),desc=f'making also {len(tr)} predictions!'):
y_bag[:,i] = tree.predict(x).astype(float)
nmin, minleaf, nfeat = tr[0].hyper_params
y = np.array([major_vote(y_bag[i]) for i in range(len(y_bag))])
if training is not None:
# print(np.mean(training == y))
if nfeat == x.shape[1]:
print(
f'Results from: prediction bagged tree({nmin=}, {minleaf=}, {nfeat=}, trees={len(tr)})'
)
else:
print(
f'Results from: prediction random forest({nmin=}, {minleaf=}, {nfeat=}, trees={len(tr)})'
)
print(
f'\t->Confusion matrix:\n{metrics.confusion_matrix(y, training)}')
print(f'\t->Accuracy:\n\t\t{metrics.accuracy_score(y, training)}')
print(f'\t->Precission:\n\t\t{metrics.precision_score(y, training)}')
print(f'\t->Recall:\n\t\t{metrics.recall_score(y, training)}')
return y
if __name__ == '__main__':
credit_data = np.genfromtxt('./data/credit_score.txt',
delimiter=',',
skip_header=True)
pima_indians = np.genfromtxt('./data/pima_indians.csv',
delimiter=',',
skip_header=True)
print("\nDataset: credit data")
tree_pred(x=credit_data[:, :5],
tr=tree_grow(x=credit_data[:, 0:5],
y=credit_data[:, 5],
nmin=2,
minleaf=1,
nfeat=5),
training=credit_data[:, 5])
print("\nDataset: credit data")
tree_pred_b(x=credit_data[:, :5],
tr=tree_grow_b(x=credit_data[:, 0:5],
y=credit_data[:, 5],
nmin=2,
minleaf=1,
nfeat=4,
m=50),
training=credit_data[:, 5])
print('\nDataset: pima indians')
tree_pred(x=pima_indians[:, :8],
tr=tree_grow(x=pima_indians[:, :8],
y=pima_indians[:, 8],
nmin=20,
minleaf=5,
nfeat=pima_indians.shape[1] - 1),
training=pima_indians[:, 8])
print('\nDataset: pima indians')
tree_pred_b(x=pima_indians[:, :8],
tr=tree_grow_b(x=pima_indians[:, :8],
y=pima_indians[:, 8],
nmin=20,
minleaf=5,
nfeat=4,
m=5),
training=pima_indians[:, 8])
# Time profiles: see what functions take what time! :)
# print("prediction metrics single tree pima indians:")
# cProfile.run("tree_pred(x=credit_data[:,:5], tr=tree_grow(x=credit_data[:,0:5], y=credit_data[:,5], nmin=2, minleaf=1, nfeat=5), dataset='credit score')", 'restats')
# Time profile of pima indians data prediction with single tree
# print("prediction metrics single tree pima indians:")
# cProfile.run(
# "tree_pred_b(x=pima_indians[:, :8], tr=tree_grow_b(x=pima_indians[:, :8], y=pima_indians[:, 8], nmin=20, minleaf=5, nfeat=4, m=5), training=pima_indians[:, 8])",
# 'restats')
# p = pstats.Stats('restats')
# p.sort_stats(SortKey.TIME)
# p.print_stats()
|