1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
import time
import numpy as np
credit_data = np.genfromtxt('./credit_score.txt',
delimiter=',',
skip_header=True)
# age,married,house,income,gender,class
# [(22, 0, 0, 28, 1, 0)
# (46, 0, 1, 32, 0, 0)
# (24, 1, 1, 24, 1, 0)
# (25, 0, 0, 27, 1, 0)
# (29, 1, 1, 32, 0, 0)
# (45, 1, 1, 30, 0, 1)
# (63, 1, 1, 58, 1, 1)
# (36, 1, 0, 52, 1, 1)
# (23, 0, 1, 40, 0, 1)
# (50, 1, 1, 28, 0, 1)]
# In the program data points are called rows
# In the program categorical or numerical attributes are called cols for columns
# The last column are the classes and will be called as classes in the program
class Node:
"""
The node object points to two other Node objects.
"""
def __init__(self, split_value_or_rows=None, col=None):
"""Initialises the column and split value for the node.
/split_value_or_rows=None/ can either be the best split value of
a col, or a boolean mask for x that selects the rows to consider for
calculating the split_value
/col=None/ if the node object has a split_value, then it also has a col
that belongs to this value
"""
self.split_value_or_rows = split_value_or_rows
self.col = col
def add_split(self, left, right):
"""
Method that is called in the main loop of tree_grow.
Lets the node object point to two other objects that can be either Leaf
or Node.
"""
self.left = left
self.right = right
def is_leaf_node(self, node_classes):
"""
@todo: Docstring for is_leaf_node
"""
self.col = None
self.split_value_or_rows = np.argmax(
np.bincount(node_classes.astype(int)))
# class Leaf:
# """
# Simple class that contains only the majority class in the leaf node.
# """
# def __init__(self, maj_class):
# """Initialises the majority vote.
# /maj_class/ @todo
# """
class Tree:
"""
Tree object that points towards the root node.
"""
def __init__(self, root_node_obj):
"""Initialises only by pointing to a Node object.
/root_node_obj/ is a node object that is made before entering the main
loop of tree grow.
"""
self.tree = root_node_obj
# def __repr__(self):
# nodelist = [self.tree]
# tree_str = ''
# while nodelist:
# current_node = nodelist.pop()
# # print(current_node.value)
# try:
# childs = [current_node.right, current_node.left]
# nodelist += childs
# except AttributeError:
# pass
# col, c = current_node.value
# tree_str += f"{col=}, {c=}"
# return tree_str
def impurity(array) -> int:
"""
Assumes the argument array is a one dimensional vector of zeroes and ones.
Computes the gini index impurity based on the relative frequency of ones in
the vector.
Example:
>>> array=np.array([1,0,1,1,1,0,0,1,1,0,1])
>>> array
array([1,0,1,1,1,0,0,1,1,0,1])
>>> impurity(array)
0.23140495867768596
"""
# Total labels
n_labels = len(array)
if n_labels == 0:
print(
"division by zero will happen, child node is pure, doesnt contain anything"
)
n_labels = 1
# Number of tuples labeled 1
n_labels_1 = array.sum()
# Calculate the relative frequency of ones with respect to the total labels
rel_freq_1 = n_labels_1 / n_labels
# Use the symmetry around the median property to also calculate the
# relative frequency of zeroes
rel_freq_0 = 1 - rel_freq_1
# Multiply the frequencies to get the gini index
gini_index = rel_freq_1 * rel_freq_0
return gini_index
def bestsplit(x, y, min_leaf) -> None:
"""
x = vector of single col
y = vector of classes (last col in x)
Consider splits of type "x <= c" where "c" is the average of two consecutive
values of x in the sorted order.
x and y must be of the same length
y[i] must be the class label of the i-th observation, and x[i] is the
correspnding value of attribute x
Example (best split on income):
>>> bestsplit(credit_data[:,3],credit_data[:,5])
36
"""
x_sorted = np.sort(np.unique(x))
if len(x_sorted) <= 2:
# Allows splitting on categorical (0 or 1) cols
split_points = x_sorted / 2
else:
# Take average between consecutive numerical rows in the x col
split_points = (x_sorted[:len(x_sorted) - 1] + x_sorted[1:]) / 2
# De toepassing van bestsplit verdeelt de x col vector in tweeen, twee
# arrays van "x rows". Deze moeten we terug krijgen om de in de child nodes
# bestsplit toe te passen.
#
# Deze lus berekent de best split value, en op basis daarvan weten we welke
# twee "x rows" arrays we moeten returnen, en welke split value het beste
# was natuurlijk.
# Nodig voor de delta i formule
impurity_parent, n_rows_parent = impurity(y), len(y)
# Hieren stoppen we (delta_i, split_value, rows_left, rows_right)
best_list = []
# Stop wanneer de array met split points leeg is
while split_points.size != 0:
# Huidige split value
split_value = split_points[-1]
# boolean masks om x rows mee te masken/slicen
mask_left, mask_right = x > split_value, x <= split_value
# class voor beide split kanten
classes_left, classes_right = y[mask_left], y[mask_right]
# Kijk of er genoeg rows in de gesplitte nodes terechtkomen, anders
# mogen we de split niet toelaten vanwege de min_leaf constraint
if len(classes_left) < min_leaf or len(classes_right) < min_leaf:
# Haal de huidige split_point uit split_points
split_points = split_points[:-1]
continue
# delta_i formule
delta_i = impurity_parent - (
impurity(classes_left) * len(classes_left) +
impurity(classes_right) * len(classes_right)) / n_rows_parent
# stop huidige splits in de lijst om best split te berekenen
best_list.append((delta_i, mask_left, mask_right, split_value))
# Haal de huidige split_point uit split_points
split_points = split_points[:-1]
# Bereken de best split voor deze x col
return max(best_list, key=lambda x: x[0])
def exhaustive_split_search(rows, classes, min_leaf):
"""
@todo: Docstring for exhaustive_split_search
"""
# We hebben enumerate nodig, want we willen weten op welke col
# (age,married,house,income,gender) we een split doen
exhaustive_best_list = []
# print(f"{rows=}, {classes=}")
for i, col in enumerate(rows.transpose()):
# calculate the best split for the col that satisfies the min_leaf
# constraint
col_best_split = bestsplit(col, classes, min_leaf)
# add for which row we calculated the best split
col_best_split += (i,)
exhaustive_best_list.append(col_best_split)
return exhaustive_best_list
def add_children(node, x, best_split):
"""
@todo: Docstring for add_children
"""
# The mask that was used to get the rows for the current node from x, we
# need this to update the rows for the children
current_mask = node.split_value_or_rows
# Unpacking the best_split tuple
mask_left, mask_right, node_split_value, node_col = best_split[1:]
# print(f"{mask_left=}, {mask_right=}, {node_split_value=}, {node_col=}")
# Give the current node the split_value and col it needs for predictions
node.split_value_or_rows, node.col = node_split_value, node_col
mask_left, mask_right = update_mask(x, mask_left, mask_right, current_mask)
return [Node(split_value_or_rows=mask_left), Node(split_value_or_rows=mask_right)]
def update_mask(x, mask_left, mask_right, current_mask):
"""
@todo: Docstring for update_mask
"""
print(f"{current_mask=}")
print(f"{mask_left=}")
print(f"{mask_right=}")
current_row_no = np.where(current_mask)
print(f"{current_rows=}")
return mask_left, mask_right
#
#
# Put all helper functions above this comment!
def tree_grow(x=None,
y=None,
n_min=None,
min_leaf=None,
n_feat=None,
**defaults) -> Tree:
"""
@todo: Docstring for tree_grow
"""
# De nodelist heeft in het begin alleen een root node met alle rows van x,
# omdat alle rows in de root in acht worden genomen voor bestsplit berekening.
#
# Dit representeren we met een boolean mask over x, met lengte het aantal rows
# in x en elementen True. Deze boolean mask zullen we repeatedly gebruiken als een
# mask over x om de rows voor bestsplit op te halen.
mask = np.full(len(x), True)
# Het eerste node object moet nu geinstantieerd worden
root = Node(split_value_or_rows=mask)
# We instantieren ook gelijk het Tree object
tr = Tree(root)
# De eerste nodelist heeft alleen de root node, daarna zijn twee childs,
# etc. totdat alle splits gemaakt zijn en de lijst leeg is.
nodelist = [root]
while None not in nodelist:
print(nodelist)
# Pop de current node uit de nodelist
node = nodelist.pop()
print(nodelist)
# Gebruik de boolean mask van de node om de rows in de node uit x te halen
node_rows = x[node.split_value_or_rows]
# Gebruik de boolean mask van de node om de classes in de node uit y te halen
node_classes = y[node.split_value_or_rows]
# print(f"{node_classes=}, {node_rows=}")
# Test of de node een leaf node is met n_min
if len(node_rows) < n_min:
node.is_leaf_node(node_classes)
continue
# Als de node niet puur is, probeer dan te splitten
if impurity(node_classes) > 0:
# We gaan exhaustively voor de rows in de node over de cols
# (age,married,house,income,gender) om de bestsplit te
# bepalen
#
# We geven min_leaf als argument omdat:
# "If the algorithm performs a split, it should be the best split that meets the minleaf constrain"
#
# We krijgen een exhaustive lijst terug met splits
exhaustive_best_list = exhaustive_split_search(node_rows, node_classes, min_leaf)
# print(exhaustive_best_list)
# Als de lijst leeg is zijn er geen potentieele splits die voldoen
# an de min leaf constraint
if not exhaustive_best_list:
node.is_leaf_node(node_classes)
continue
# Hier halen we de beste split, en rows voor de child/split nodes
# uit de exhaustive best list
best_split = max(exhaustive_best_list, key=lambda z: z[0])
# Hier voegen we de twee nieuwe nodes toe aan de gesplitte "parent"
nodelist += add_children(node, x, best_split)
# node.add_split(left_child_node, right_child_node)
else:
node.is_leaf_node(node_classes)
continue
return tr
# Initiate the nodelist with tuples of slice and class labels
# nodelist = [Node(value=slices)]
# tree = Tree(nodelist[0])
# while nodelist:
# current_node = nodelist.pop()
# slices = current_node.value
# node_classes = y[slices]
# # print(node_classes)
# # f'Current node will be leaf node if (( (number of data "tuples" in child node) < {n_min=} )) \n'
# # put stopping rules here before making a split
# if len(node_classes) < n_min:
# current_node.value = Leaf(
# np.argmax(np.bincount(node_classes.astype(int))))
# print(f"leaf node has majority clas:\n{current_node.value.value=}")
# continue
# if impurity(node_classes) > 0:
# # print(
# # f"Exhaustive split search says, new node will check these rows for potential spliterinos:\n{x[slices]}"
# # )
# # If we arrive here ever we are splitting
# # bestsplit(col, node_labels) ->
# # {"slices": list[int], "split": numpyfloat, "best_delta_i": numpyfloat}
# # slices (list) used for knowing which rows (int) to consider in a node
# # best_split saved in current_node.value
# # best_delta_i used to find best split among x_columns
# best_dict = None
# for i, x_col in enumerate(x[slices].transpose()):
# print(
# "\nExhaustive split search says; \"Entering new column\":")
# col_split_dict = bestsplit(x_col, node_classes, slices)
# if best_dict is not None:
# if col_split_dict["delta_i"] > best_dict["delta_i"]:
# best_dict = col_split_dict
# best_dict["col"] = i
# else:
# best_dict = col_split_dict
# best_dict["col"] = i
# print("\nThe best split for current node:", best_dict)
# # Here we store the splitted data into Node objects
# current_node.value = best_dict["split"]
# current_node.col = best_dict["col"]
# # Split will not happen if (( (number of data "tuples" potential split) < {min_leaf=} ))\n'
# if min([len(x) for x in best_dict["slices"].values()]) < min_leaf:
# continue
# else:
# # Invert left and right because we want left to pop() first
# children = [
# Node(value=best_dict["slices"]["right"]),
# Node(value=best_dict["slices"]["left"])
# ]
# current_node.add_split(children[1], children[0])
# nodelist += children
# else:
# current_node.value = Leaf(
# np.argmax(np.bincount(node_classes.astype(int))))
# print(
# f"\n\nLEAF NODE has majority clas:\n{current_node.value.value=}"
# )
# continue
def predict(x, nodes) -> list:
"""
@todo: Docstring for predict
"""
# which row to drop
# print(x)
drop = 0
while not set(nodes).issubset({0, 1}):
print(nodes)
# print(x[drop])
if isinstance(nodes[drop].value, Leaf):
nodes[drop] = nodes[drop].value.value
drop += 1
continue
print(nodes[drop].value)
print(nodes[drop].col)
# print(nodes[drop].col)
if x[drop, nodes[drop].col] > nodes[drop].value:
nodes[drop] = nodes[drop].left
else:
nodes[drop] = nodes[drop].right
return np.array(nodes)
def tree_pred(x=None, tr=None, **defaults) -> np.array:
"""
@todo: Docstring for tree_pred
"""
nodes = [tr.tree] * len(x)
# y = np.linspace(0, len(x), 0)
# y = np.array(ele)
y = predict(x, nodes)
print(f"\n\nPredicted classes for {x=}\n\n are: {y=}")
return y
if __name__ == '__main__':
#### IMPURITY TEST
# array=np.array([1,0,1,1,1,0,0,1,1,0,1])
# print(impurity(array))
# Should give 0.23....
#### BESTSPLIT TEST
# print(bestsplit(credit_data[:, 3], credit_data[:, 5]))
# Should give 36
#### TREE_GROW TEST
tree_grow_defaults = {
'x': credit_data[:, :5],
'y': credit_data[:, 5],
'n_min': 2,
'min_leaf': 1,
'n_feat': 5
}
# Calling the tree grow, unpacking default as argument
tree_grow(**tree_grow_defaults)
#### TREE_PRED TEST
# tree_pred_defaults = {
# 'x': credit_data[:, :5],
# 'tr': tree_grow(**tree_grow_defaults)
# }
# tree_pred(**tree_pred_defaults)
# start_time = time.time()
# print("--- %s seconds ---" % (time.time() - start_time))
|