diff options
| author | Mike Vink <mike1994vink@gmail.com> | 2020-09-23 08:45:49 +0200 |
|---|---|---|
| committer | Mike Vink <mike1994vink@gmail.com> | 2020-09-23 08:45:49 +0200 |
| commit | da8ca975fb9d11d3801fef66344736e675734c42 (patch) | |
| tree | 5b306e31567a632036967db4da7dcd594d6ac3c0 /gettingStarted.py | |
| parent | 0cbb9da5d206817f857391b1965467945c25c056 (diff) | |
Deleting some misc files
Diffstat (limited to 'gettingStarted.py')
| -rw-r--r-- | gettingStarted.py | 100 |
1 files changed, 0 insertions, 100 deletions
diff --git a/gettingStarted.py b/gettingStarted.py deleted file mode 100644 index 3a8d907..0000000 --- a/gettingStarted.py +++ /dev/null @@ -1,100 +0,0 @@ -import numpy as np
-import random
-import math
-from copy import deepcopy
-
-credit_data = np.genfromtxt('/Users/mikevink/Documents/python/2020_data_mining_assignments/credit_score.txt', delimiter=',', skip_header=True)
-
-#print(credit_data)
-#print(credit_data[0])
-#print(credit_data[:,3])
-#print(credit_data[4,0])
-#print(np.sort(np.unique(credit_data[:,3]))) #Give the distinct values of income, sorted from low to high
-#print(np.sum(credit_data[:,5]))
-#print(credit_data.sum(axis=0)) #Add the entries of each column of credit_data
-#print(credit_data.sum(axis=1)) #Add the entries of each row
-#print(credit_data[credit_data[:,0] > 27]) # Select all rows where the first column is bigger than 27
-#
-#x = np.array([2, 5, 10])
-#print(x)
-#print(np.arange(0, 10))
-#
-#print(np.arange(0, 10)[credit_data[:,0] > 27]) #Select the *row numbers* of the rows where the first column of credit_data is bigger than 27
-#
-#index = np.random.choice(np.arange(0, 10), size=5, replace=False) #Draw a random sample of size 5 from the numbers 1 through 10 (without replacement)
-#print(index)
-#train = credit_data[index,]
-#print(train)
-#test = np.delete(credit_data, index, axis=0) #Select all rows with row number not in "index"
-#print(test)
-#
-#print(random.choice(train))
-
-
-### Practice exercise 1 ###
-def impurity(vector): # vector = list of 0s and 1s
- num_of_class_labels = len(vector)
- num_of_class_1 = sum(vector)
- num_of_class_0 = num_of_class_labels - num_of_class_1
- return (num_of_class_0 / num_of_class_labels) * (num_of_class_1 / num_of_class_labels)
-
-array=np.array([1,0,1,1,1,0,0,1,1,0,1])
-print(impurity(array))
-
-
-### Practice exercise 2 ###
-def bestsplit(x, y): # x = numeric values; y = class labels
- x_sorted = np.sort(np.unique(x))
- split_points = (x_sorted[:len(x_sorted)-1] + x_sorted[1:]) / 2
-
- best_impurity_after_split = math.inf
- for split in split_points:
- impurity_after_split = impurity(y[x <= split]) + impurity(y[x > split])
- if impurity_after_split < best_impurity_after_split:
- best_split = split
- best_impurity_after_split = impurity_after_split
-
- return best_split
-
-print(bestsplit(credit_data[:,3], credit_data[:,5]))
-
-
-
-class Node:
- def _init_(self):
- self.left = None
- self.right = None
- self.split_value = None
-
-class Leaf:
- def __init__(self, predicted_class: int):
- self.predicted_class = predicted_class
-
-
-def tree_grow(x, y): # x = numeric values; y = class labels
- root = Node()
- root.split_value = bestsplit(x, y)
- root.left = Leaf(0)
- root.right = Leaf(1)
- return root
-
-def tree_pred(x, tr):
- y = []
- for value in x:
- y.append(single_value_pred(value, tr))
- return y
-
-def single_value_pred(value, current_tree):
- if isinstance(current_tree, Leaf):
- return current_tree.predicted_class
- else:
- if value <= current_tree.split_value:
- return single_value_pred(value, current_tree.left)
- else:
- return single_value_pred(value, current_tree.right)
-
-tree = tree_grow(credit_data[:,3], credit_data[:,5])
-print(tree_pred([32, 38, 3, 40], tree))
-
-
-
|
