#lang racket (provide make-deriv variable? same-variable? =number?) (define (variable? x) (symbol? x)) (define (same-variable? x y) (and (variable? x) (variable? y) (eq? x y))) (define (=number? x num) (and (number? x) (= x num))) (define (make-sum a1 a2) (cond ((=number? a1 0) a2) ((=number? a2 0) a1) ((and (number? a1) (number? a2)) (+ a1 a2)) (else (list '+ a1 a2)))) (define (make-product m1 m2) (cond ((or (=number? m1 0) (=number? m2 0)) 0) ((=number? m1 1) m2) ((=number? m2 1) m1) ((and (number? m1) (number? m2)) (* m1 m2)) (else (list '* m1 m2)))) (define (make-exponent e p) (cond ((=number? p 0) 1) ((=number? p 1) e) (else (list '** e p)))) (define (sum? x) (and (pair? x) (eq? (car x) '+))) (define (addend s) (cadr s)) (define (augend s) (cond ((null? (cdddr s)) (caddr s)) (else (cons '+ (cddr s))))) (define (product? x) (and (pair? x) (eq? (car x) '*))) (define (multiplier p) (cadr p)) (define (multiplicand p) (cond ((null? (cdddr p)) (caddr p)) (else (cons '* (cddr p))))) (define (exponent? x) (and (pair? x) (eq? (car x) '**))) (define (base expo) (cadr expo)) (define (exponent expo) (caddr expo)) (define (make-deriv make-sum sum? addend augend make-product product? multiplier multiplicand) (define (deriv expr var) (cond ((number? expr) 0) ((variable? expr) (if (same-variable? expr var) 1 0)) ((sum? expr) (make-sum (deriv (addend expr) var) (deriv (augend expr) var))) ((product? expr) (make-sum (make-product (multiplier expr) (deriv (multiplicand expr) var)) (make-product (deriv (multiplier expr) var) (multiplicand expr)))) ((exponent? expr) (make-product (deriv (base expr) var) (make-product (exponent expr) (make-exponent (base expr) (- (exponent expr) 1))))) (else (error "unkown expression type -- DERIV" expr)))) deriv)