summaryrefslogtreecommitdiff
path: root/README.md
blob: 61fc9e4b91360b401998ec101a9bf807d2804b22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
<!-- @format -->

<a name="readme-top"></a>

<!-- [![Contributors][contributors-shield]][contributors-url]
[![Forks][forks-shield]][forks-url]
[![Stargazers][stars-shield]][stars-url]
[![Issues][issues-shield]][issues-url]
[![MIT License][license-shield]][license-url]
[![LinkedIn][linkedin-shield]][linkedin-url] -->

![Product Name Screen Shot][product-screenshot]

<div align="center">
  <h1 align="center">Robusta KRR</h1>
  <p align="center">
    Prometheus-based Kubernetes Resource Recommendations
    <br />
    <a href="#installation"><strong>Installation</strong></a>
    .
    <a href="#usage"><strong>Usage</strong></a>
    Β·
    <a href="#how-krr-works"><strong>How KRR works</strong></a>
    .
    <a href="#slack-integration"><strong>Slack Integration</strong></a>
    <br />
    <a href="https://github.com/robusta-dev/krr/issues">Report Bug</a>
    Β·
    <a href="https://github.com/robusta-dev/krr/issues">Request Feature</a>
    Β·
    <a href="#support">Support</a>
  </p>
</div>
<!-- TABLE OF CONTENTS -->
<!-- <details>
  <summary>Table of Contents</summary>
  <ol>
    <li>
      <a href="#about-the-project">About The Project</a>
      <ul>
        <li><a href="#built-with">Built With</a></li>
      </ul>
    </li>
    <li>
      <a href="#getting-started">Getting Started</a>
      <ul>
        <li><a href="#prerequisites">Prerequisites</a></li>
        <li><a href="#installation">Installation</a></li>
      </ul>
    </li>
    <li><a href="#usage">Usage</a></li>
    <li><a href="#roadmap">Roadmap</a></li>
    <li><a href="#contributing">Contributing</a></li>
    <li><a href="#license">License</a></li>
    <li><a href="#contact">Contact</a></li>
    <li><a href="#acknowledgments">Acknowledgments</a></li>
  </ol>
</details> -->
<!-- ABOUT THE PROJECT -->

## About The Project

Robusta KRR (Kubernetes Resource Recommender) is a CLI tool for optimizing resource allocation in Kubernetes clusters. It gathers pod usage data from Prometheus and recommends requests and limits for CPU and memory. This reduces costs and improves performance.

### Data Integrations

[![Used to send data to KRR](./images/krr-datasources.svg)](#data-source-integrations)


_View Instructions for: [Prometheus](#prometheus-victoria-metrics-and-thanos-auto-discovery), [Thanos](#prometheus-victoria-metrics-and-thanos-auto-discovery), [Victoria Metrics](#prometheus-victoria-metrics-and-thanos-auto-discovery), [Google Managed Prometheus](./docs/google-cloud-managed-service-for-prometheus.md), [Amazon Managed Prometheus](#amazon-managed-prometheus), [Azure Managed Prometheus](#azure-managed-prometheus), [Coralogix](#coralogix-managed-prometheus) and [Grafana Cloud](#grafana-cloud-managed-prometheus)_



### Reporting Integrations

[![Used to receive information from KRR](./images/krr-other-integrations.svg)](#integrations)

_View instructions for: [Seeing recommendations in a UI](#free-ui-for-krr-recommendations), [Sending recommendations to Slack](#slack-notification), [Setting up KRR as a k9s plugin](#k9s-plugin)_

### Features

- **No Agent Required**: Run a CLI tool on your local machine for immediate results. (Or run in-cluster for weekly [Slack reports](#slack-integration).)
- **Prometheus Integration**: Get recommendations based on the data you already have
- **Explainability**: Understand how recommendations were calculated
- **Extensible Strategies**: Easily create and use your own strategies for calculating resource recommendations.
- **Free SaaS Platform**: See why KRR recommends what it does, by using the [free Robusta SaaS platform](https://home.robusta.dev/).
- **Future Support**: Upcoming versions will support custom resources (e.g. GPUs) and custom metrics.

### Why Use KRR?

According to a recent [Sysdig study](https://sysdig.com/blog/millions-wasted-kubernetes/), on average, Kubernetes clusters have:

- 69% unused CPU
- 18% unused memory

By right-sizing your containers with KRR, you can save an average of 69% on cloud costs.

Read more about [how KRR works](#how-krr-works) and [KRR vs Kubernetes VPA](#difference-with-kubernetes-vpa)

<!-- GETTING STARTED -->

## Installation

### Requirements

KRR requires Prometheus 2.26+ and [kube-state-metrics](https://github.com/kubernetes/kube-state-metrics).

<details>
  <summary>Which metrics does KRR need?</summary>
No setup is required if you use kube-prometheus-stack or <a href="https://docs.robusta.dev/master/configuration/alertmanager-integration/embedded-prometheus.html">Robusta's Embedded Prometheus</a>.

If you have a different setup, make sure the following metrics exist:
  
- `container_cpu_usage_seconds_total`
- `container_memory_working_set_bytes`
- `kube_replicaset_owner`
- `kube_pod_owner`
- `kube_pod_status_phase`

_Note: If one of last three metrics is absent KRR will still work, but it will only consider currently-running pods when calculating recommendations. Historic pods that no longer exist in the cluster will not be taken into consideration._
</details>

### Installation Methods

<details>
  <summary>Brew (Mac/Linux)</summary>

1. Add our tap:

```sh
brew tap robusta-dev/homebrew-krr
```

2. Install KRR:

```sh
brew install krr
```

3. Check that installation was successful:

```sh
krr --help
```

4. Run KRR (first launch might take a little longer):

```sh
krr simple
```
</details>

<details>
  <summary>Windows</summary>

You can install using brew (see above) on [WSL2](https://docs.brew.sh/Homebrew-on-Linux), or install from source (see below).
</details>

<details>
  <summary>From Source</summary>

1. Make sure you have [Python 3.9](https://www.python.org/downloads/) (or greater) installed
2. Clone the repo:

```sh
git clone https://github.com/robusta-dev/krr
```

3. Navigate to the project root directory (`cd ./krr`)
4. Install requirements:

```sh
pip install -r requirements.txt
```

5. Run the tool:

```sh
python krr.py --help
```

Notice that using source code requires you to run as a python script, when installing with brew allows to run `krr`.
All above examples show running command as `krr ...`, replace it with `python krr.py ...` if you are using a manual installation.

</details>

### Additional Options

- [View KRR Reports in a Web UI](#free-ui-for-krr-recommendations)
- [Receive KRR Reports Weekly in Slack](#slack-notification)

### Environment-Specific Instructions
Setup KRR for...
- [Google Cloud Managed Prometheus](./docs/google-cloud-managed-service-for-prometheus.md)
- [Azure Managed Prometheus](#azure-managed-prometheus)
- [Amazon Managed Prometheus](#amazon-managed-prometheus)
- [Coralogix Managed Prometheus](#coralogix-managed-prometheus)
- [Grafana Cloud Managed Prometheus](#grafana-cloud-managed-prometheus)

<p align="right">(<a href="#readme-top">back to top</a>)</p>

<!-- USAGE EXAMPLES -->

## Usage

<details>
  <summary>Basic usage</summary>
  
```sh
krr simple
```
</details>

<details>
  <summary>Tweak the recommendation algorithm (strategy)</summary>
  
Most helpful flags:

- `--cpu-min` Sets the minimum recommended cpu value in millicores
- `--mem-min` Sets the minimum recommended memory value in MB
- `--history_duration` The duration of the Prometheus history data to use (in hours)

More specific information on Strategy Settings can be found using

```sh
krr simple --help
```
</details>

<details>
  <summary>Giving an Explicit Prometheus URL</summary>

If your Prometheus is not auto-connecting, you can use `kubectl port-forward` for manually forwarding Prometheus.

For example, if you have a Prometheus Pod called `kube-prometheus-st-prometheus-0`, then run this command to port-forward it:

```sh
kubectl port-forward pod/kube-prometheus-st-prometheus-0 9090
```

Then, open another terminal and run krr in it, giving an explicit Prometheus url:

```sh
krr simple -p http://127.0.0.1:9090
```
</details>

<details>
  <summary>Run on specific namespaces</summary>

List as many namespaces as you want with `-n` (in this case, `default` and `ingress-nginx`)

```sh
krr simple -n default -n ingress-nginx
```
</details>

<details>
  <summary>Run on workloads filtered by label</summary>

Use a <a href="https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#api">label selector</a>

```sh
python krr.py simple --selector 'app.kubernetes.io/instance in (robusta, ingress-nginx)'
```
</details>

<details>
  <summary>Override the kubectl context</summary>

By default krr will run in the current context. If you want to run it in a different context:

```sh
krr simple -c my-cluster-1 -c my-cluster-2
```

</details>

<details>
  <summary>Customize output (JSON, YAML, and more</summary>

Currently KRR ships with a few formatters to represent the scan data:

- `table` - a pretty CLI table used by default, powered by [Rich](https://github.com/Textualize/rich) library
- `json`
- `yaml`
- `pprint` - data representation from python's pprint library
- `csv_export` - export data to a csv file in the current directory

To run a strategy with a selected formatter, add a `-f` flag:

```sh
krr simple -f json
```

For JSON output, add --logtostderr  so no logs go to the result file:

```sh
krr simple --logtostderr -f json > result.json
```

For YAML output, do the same:

```sh
krr simple --logtostderr -f yaml > result.yaml
```
</details>

<details>
  <summary>Centralized Prometheus (multi-cluster)</summary>
  <p ><a href="#scanning-with-a-centralized-prometheus">See below on filtering output from a centralized prometheus, so it matches only one cluster</a></p>

</details>

<details>
  <summary>Debug mode</summary>
If you want to see additional debug logs:

```sh
krr simple -v
```

</details>

<p align="right">(<a href="#readme-top">back to top</a>)</p>

## How KRR works

### Metrics Gathering

Robusta KRR uses the following Prometheus queries to gather usage data:

- CPU Usage:

  ```
  sum(irate(container_cpu_usage_seconds_total{{namespace="{object.namespace}", pod="{pod}", container="{object.container}"}}[{step}]))
  ```

- Memory Usage:

  ```
  sum(container_memory_working_set_bytes{job="kubelet", metrics_path="/metrics/cadvisor", image!="", namespace="{object.namespace}", pod="{pod}", container="{object.container}"})
  ```

[_Need to customize the metrics? Tell us and we'll add support._](https://github.com/robusta-dev/krr/issues/new)

Get a free breakdown of KRR recommendations in the [Robusta SaaS](#optional-free-saas-platform).

### Algorithm

By default, we use a _simple_ strategy to calculate resource recommendations. It is calculated as follows (_The exact numbers can be customized in CLI arguments_):

- For CPU, we set a request at the 99th percentile with no limit. Meaning, in 99% of the cases, your CPU request will be sufficient. For the remaining 1%, we set no limit. This means your pod can burst and use any CPU available on the node - e.g. CPU that other pods requested but aren’t using right now.

- For memory, we take the maximum value over the past week and add a 15% buffer.

### Prometheus connection

Find about how KRR tries to find the default Prometheus to connect <a href="#prometheus-victoria-metrics-and-thanos-auto-discovery">here</a>.

<p align="right">(<a href="#readme-top">back to top</a>)</p>

## Difference with Kubernetes VPA

| Feature πŸ› οΈ                  | Robusta KRR πŸš€                                                                                             | Kubernetes VPA 🌐                                           |
| --------------------------- | ---------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------- |
| Resource Recommendations πŸ’‘ | βœ… CPU/Memory requests and limits                                                                          | βœ… CPU/Memory requests and limits                           |
| Installation Location 🌍    | βœ… Not required to be installed inside the cluster, can be used on your own device, connected to a cluster | ❌ Must be installed inside the cluster                     |
| Workload Configuration πŸ”§   | βœ… No need to configure a VPA object for each workload                                                     | ❌ Requires VPA object configuration for each workload      |
| Immediate Results ⚑        | βœ… Gets results immediately (given Prometheus is running)                                                  | ❌ Requires time to gather data and provide recommendations |
| Reporting πŸ“Š                | βœ… Detailed CLI Report, web UI in [Robusta.dev](https://home.robusta.dev/)                                 | ❌ Not supported                                            |
| Extensibility πŸ”§            | βœ… Add your own strategies with few lines of Python                                                        | :warning: Limited extensibility                             |
| Explainability πŸ“–           | βœ… See graphs explaining the recommendations                                                               | ❌ Not supported                                            |
| Custom Metrics πŸ“           | πŸ”„ Support in future versions                                                                              | ❌ Not supported                                            |
| Custom Resources πŸŽ›οΈ         | πŸ”„ Support in future versions (e.g., GPU)                                                                  | ❌ Not supported                                            |
| Autoscaling πŸ”€              | πŸ”„ Support in future versions                                                                              | βœ… Automatic application of recommendations                 |
| Default History πŸ•’          | 14 days                                                                                                    | 8 days                                             |

<!-- ADVANCED USAGE EXAMPLES -->




## Data Source Integrations
<details id="prometheus-victoria-metrics-and-thanos-auto-discovery"><summary> Prometheus, Victoria Metrics and Thanos auto-discovery</summary>

By default, KRR will try to auto-discover the running Prometheus Victoria Metrics and Thanos.
For discovering Prometheus it scans services for those labels:

```python
"app=kube-prometheus-stack-prometheus"
"app=prometheus,component=server"
"app=prometheus-server"
"app=prometheus-operator-prometheus"
"app=rancher-monitoring-prometheus"
"app=prometheus-prometheus"
```

For Thanos its these labels:

```python
"app.kubernetes.io/component=query,app.kubernetes.io/name=thanos",
"app.kubernetes.io/name=thanos-query",
"app=thanos-query",
"app=thanos-querier",
```

And for Victoria Metrics its the following labels:

```python
"app.kubernetes.io/name=vmsingle",
"app.kubernetes.io/name=victoria-metrics-single",
"app.kubernetes.io/name=vmselect",
"app=vmselect",
```

If none of those labels result in finding Prometheus, Victoria Metrics or Thanos, you will get an error and will have to pass the working url explicitly (using the `-p` flag).

<p align="right">(<a href="#readme-top">back to top</a>)</p>

</details>

<details id="scanning-with-a-centralized-prometheus">
<summary>Scanning with a Centralized Prometheus</summary>

If your Prometheus monitors multiple clusters we require the label you defined for your cluster in Prometheus.

For example, if your cluster has the Prometheus label `cluster: "my-cluster-name"`, then run this command:

```sh
krr.py simple --prometheus-label cluster -l my-cluster-name
```

You may also need the `-p` flag to explicitly give Prometheus' URL.

</details>


<details id="azure-managed-prometheus">
<summary>Azure Managed Prometheus</summary>

For Azure managed Prometheus you need to generate an access token, which can be done by running the following command:

```sh
# If you are not logged in to Azure, uncomment out the following line
# az login
AZURE_BEARER=$(az account get-access-token --resource=https://prometheus.monitor.azure.com  --query accessToken --output tsv); echo $AZURE_BEARER
```

Than run the following command with PROMETHEUS_URL substituted for your Azure Managed Prometheus URL:

```sh
python krr.py simple --namespace default -p PROMETHEUS_URL --prometheus-auth-header "Bearer $AZURE_BEARER"
```

<p ><a href="#scanning-with-a-centralized-prometheus">See here about configuring labels for centralized prometheus</a></p>

<p align="right">(<a href="#readme-top">back to top</a>)</p>

</details>


<details id="amazon-managed-prometheus">
<summary>Amazon Managed Prometheus</summary>

For Amazon Managed Prometheus you need to add your Prometheus link and the flag --eks-managed-prom and krr will automatically use your aws credentials

```sh
python krr.py simple -p "https://aps-workspaces.REGION.amazonaws.com/workspaces/..." --eks-managed-prom
```

Additional optional parameters are:

```sh
--eks-profile-name PROFILE_NAME_HERE # to specify the profile to use from your config
--eks-access-key ACCESS_KEY # to specify your access key
--eks-secret-key SECRET_KEY # to specify your secret key
--eks-service-name SERVICE_NAME # to use a specific service name in the signature
--eks-managed-prom-region REGION_NAME # to specify the region the Prometheus is in
```

<p ><a href="#scanning-with-a-centralized-prometheus">See here about configuring labels for centralized prometheus</a></p>

<p align="right">(<a href="#readme-top">back to top</a>)</p>
</details>


<details id="coralogix-managed-prometheus">
<summary>Coralogix Managed Prometheus</summary>

For Coralogix managed Prometheus you need to specify your Prometheus link and add the flag coralogix_token with your Logs Query Key

```sh
python krr.py simple -p "https://prom-api.coralogix..." --coralogix_token
```

<p ><a href="#scanning-with-a-centralized-prometheus">See here about configuring labels for centralized prometheus</a></p>

<p align="right">(<a href="#readme-top">back to top</a>)</p>
</details>

<details id="grafana-cloud-managed-prometheus">
<summary>Grafana Cloud Managed Prometheus</summary>

For Grafana Cloud managed Prometheus you need to specify Prometheus link, Prometheus user, and an access token of your Grafana Cloud stack. The Prometheus link and user for the stack can be found on the Grafana Cloud Portal. An access token with a `metrics:read` scope can also be created using Access Policies on the same portal.

Next, run the following command, after setting the values of PROM_URL, PROM_USER, and PROM_TOKEN variables with your Grafana Cloud stack's Prometheus link, Prometheus user, and access token.

```sh
python krr.py simple -p $PROM_URL --prometheus-auth-header "Bearer ${PROM_USER}:${PROM_TOKEN}" --prometheus-ssl-enabled
```

<p ><a href="#scanning-with-a-centralized-prometheus">See here about configuring labels for centralized prometheus</a></p>

<p align="right">(<a href="#readme-top">back to top</a>)</p>

</details>
</p>

## Integrations

<details id="free-ui-for-krr-recommendations">
<summary>Free UI for KRR recommendations</summary>

With the [free Robusta SaaS platform](https://home.robusta.dev/) you can:

- See why KRR recommends what it does
- Sort and filter recommendations by namespace, priority, and more
- Copy a YAML snippet to fix the problems KRR finds

![Robusta UI Screen Shot][ui-screenshot]

</details>

<details id="slack-notification">
<summary>Slack Notification</summary>

Put cost savings on autopilot. Get notified in Slack about recommendations above X%. Send a weekly global report, or one report per team.

![Slack Screen Shot][slack-screenshot]

### Prerequisites

- A Slack workspace

### Setup

1. [Install Robusta with Helm to your cluster and configure slack](https://docs.robusta.dev/master/installation.html)
2. Create your KRR slack playbook by adding the following to `generated_values.yaml`:

```
customPlaybooks:
# Runs a weekly krr scan on the namespace devs-namespace and sends it to the configured slack channel
customPlaybooks:
- triggers:
  - on_schedule:
      fixed_delay_repeat:
        repeat: -1 # number of times to run or -1 to run forever
        seconds_delay: 604800 # 1 week
  actions:
  - krr_scan:
      args: "--namespace devs-namespace" ## KRR args here
  sinks:
      - "main_slack_sink" # slack sink you want to send the report to here
```

3. Do a Helm upgrade to apply the new values: `helm upgrade robusta robusta/robusta --values=generated_values.yaml --set clusterName=<YOUR_CLUSTER_NAME>`


<p align="right">(<a href="#readme-top">back to top</a>)</p>

</details>

<details id="k9s-plugin">
<summary>k9s Plugin</summary>

  Install our k9s Plugin to get recommendations directly in deployments/daemonsets/statefulsets views.

  Plugin: [resource recommender](https://github.com/derailed/k9s/blob/master/plugins/resource-recommendations.yaml)

  Installation instructions: [k9s docs](https://k9scli.io/topics/plugins/)
</details>

## Creating a Custom Strategy/Formatter

Look into the [examples](https://github.com/robusta-dev/krr/tree/main/examples) directory for examples on how to create a custom strategy/formatter.

<p align="right">(<a href="#readme-top">back to top</a>)</p>

<!-- TESTING -->

## Testing

_We use pytest to run tests._

1. Install the project manually (see above)
2. Navigate to the project root directory
3. Install poetry (https://python-poetry.org/docs/#installing-with-the-official-installer)
4. Install dev dependencies:

```sh
poetry install --group dev
```

5. Install robusta_krr as editable dependency:

```sh
pip install -e .
```

6. Run the tests:

```sh
poetry run pytest
```

<p align="right">(<a href="#readme-top">back to top</a>)</p>

<!-- CONTRIBUTING -->

## Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are **greatly appreciated**.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement".
Don't forget to give the project a star! Thanks again!

1. Fork the Project
2. Create your Feature Branch (`git checkout -b feature/AmazingFeature`)
3. Commit your Changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the Branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request

<p align="right">(<a href="#readme-top">back to top</a>)</p>

<!-- LICENSE -->

## License

Distributed under the MIT License. See [LICENSE.txt](https://github.com/robusta-dev/krr/blob/main/LICENSE) for more information.

<p align="right">(<a href="#readme-top">back to top</a>)</p>

<!-- CONTACT -->

## Support

If you have any questions, feel free to contact **support@robusta.dev** or message us on [robustacommunity.slack.com](https://bit.ly/robusta-slack)

<p align="right">(<a href="#readme-top">back to top</a>)</p>

<!-- MARKDOWN LINKS & IMAGES -->
<!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->

[contributors-shield]: https://img.shields.io/github/contributors/othneildrew/Best-README-Template.svg?style=for-the-badge
[contributors-url]: https://github.com/othneildrew/Best-README-Template/graphs/contributors
[forks-shield]: https://img.shields.io/github/forks/othneildrew/Best-README-Template.svg?style=for-the-badge
[forks-url]: https://github.com/othneildrew/Best-README-Template/network/members
[stars-shield]: https://img.shields.io/github/stars/othneildrew/Best-README-Template.svg?style=for-the-badge
[stars-url]: https://github.com/othneildrew/Best-README-Template/stargazers
[issues-shield]: https://img.shields.io/github/issues/othneildrew/Best-README-Template.svg?style=for-the-badge
[issues-url]: https://github.com/othneildrew/Best-README-Template/issues
[license-shield]: https://img.shields.io/github/license/othneildrew/Best-README-Template.svg?style=for-the-badge
[license-url]: https://github.com/othneildrew/Best-README-Template/blob/master/LICENSE.txt
[linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555
[linkedin-url]: https://linkedin.com/in/othneildrew
[product-screenshot]: images/screenshot.jpeg
[slack-screenshot]: images/krr_slack_example.png
[ui-screenshot]: images/ui_video.gif