1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
library(tidyverse)
library(knitr)
library(dlookr)
library(xlsx)
library(ggpubr)
library(corrplot)
data <- read_csv("../csv/visits_all.csv")
class_correct <- data %>%
na_if("NULL") %>%
drop_na(vaccine_resp) %>%
group_by(donor_id, visit_year) %>%
summarise(
post = if_else(any(visit_type_hai == 'post'), TRUE, FALSE),
internal = visit_internal_id,
hai_type = visit_type_hai,
gmt = geo_mean,
fold_change = as.numeric(d_geo_mean),
response = vaccine_resp,
)
post_gmt_vec <- class_correct %>%
group_map(
~ {
if (any(.$hai_type == 'post')) {
rep(.$gmt[.$hai_type == 'post'] >= 40, nrow(.))
} else {
rep(NA, nrow(.))
}
}
)
post_gmt_vec
post_gmt_vec <- unlist(post_gmt_vec)
class_correct <- class_correct %>%
ungroup() %>%
mutate(
check_post = if_else(post, 'Post visit', 'No post visit'),
post_gmt = post_gmt_vec,
response = recode(factor(response), '0'='Low', '1'='High'),
check_correct = if_else(
(!is.na(post_gmt) & (!post_gmt | fold_change < 4) & response == 'Low') |
(!is.na(post_gmt) & (post_gmt & fold_change >= 4) & response == 'High'),
'Correct clasification',
'False classification'
),
)
seasonal_classification_data <- class_correct %>%
group_by(donor_id, visit_year) %>%
summarise(
response=response,
check_correct=check_correct,
check_post
) %>%
ungroup() %>%
distinct()
seasonal_classification_plot <- seasonal_classification_data %>%
ggplot(aes(response, fill = response)) +
geom_bar() +
geom_text(stat='count', aes(label=paste("n = (",stat(count),")")), vjust= +1) +
facet_grid(factor(check_correct) ~ factor(check_post)) +
theme_pubr() +
labs(title="Seasonal classification of donors by correctness and post visit")
seasonal_classification_plot
ggsave("../images/season_classification.png", seasonal_classification_plot, width = 2 * 15, height = 19, units = "cm")
incorrect_cases <- class_correct %>%
filter(check_correct == "False classification")
write.xlsx(incorrect_cases, "../incorrect_visits.xlsx", sheetName="sheet1", col.names=T, row.names=T, append=F)
desc <- data %>%
na_if("NULL") %>%
mutate(across(everything(), as.numeric)) %>%
mutate(geo_mean = na_if(geo_mean, 0)) %>%
select(age, cmv_status, ebv_status, bmi, vaccine, geo_mean, d_geo_mean, vaccine_resp, total_data) %>%
describe() %>%
column_to_rownames("variable") %>%
t() %>%
as_tibble(rownames="stat") %>%
slice(1:8) %>%
mutate(across(2:10, round, 1)) %>%
kable(format = "latex", booktabs = TRUE)
clip <- pipe("xclip -selection clipboard", "w")
write(desc, file = clip)
close(clip)
corr_pre <- data %>%
select(visit_type_hai, age, vaccine, geo_mean, d_geo_mean, vaccine_resp, total_data) %>%
na_if("NULL") %>%
mutate(across(2:length(.), as.numeric)) %>%
filter(!is.na(vaccine_resp) & !is.na(vaccine) & !is.na(d_geo_mean) & !is.na(vaccine_resp) & visit_type_hai == "pre") %>%
select(-visit_type_hai)
corr_pre
library(gridGraphics)
grab_grob <- function(){
grid.echo()
grid.grab()
}
corr_post <- data %>%
select(visit_type_hai, age, vaccine, geo_mean, d_geo_mean, vaccine_resp, total_data) %>%
na_if("NULL") %>%
mutate(across(2:length(.), as.numeric)) %>%
filter(!is.na(vaccine_resp) & !is.na(vaccine) & !is.na(d_geo_mean) & !is.na(vaccine_resp) & visit_type_hai == "post") %>%
select(-visit_type_hai)
corr_post
png(file = "../images/corr_plot_visits_pre_complete.png",
height = 1.5 * 19,
width = 2 * 15,
res = 1200,
units = "cm",
)
par(mfrow=c(2,1))
M <- cor(corr_pre)
corrplot.mixed(M)
M <- cor(corr_post)
corrplot.mixed(M)
dev.off()
|