1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
library(samr)
library(tidyverse)
# assumes modelling exploration is loaded in the R session
data1_sam <- data1 %>%
select(donor_id, outcome, Feature, value) %>%
mutate(outcome = factor(outcome, labels = c(1, 2))) %>%
pivot_wider(
names_from = Feature,
values_from = value
) %>%
select(-donor_id)
data1_sam_y <- data1_sam[['outcome']]
data1_sam_x <- t(as.data.frame(data1_sam[-1]))
samobj1 <- samr::SAM(
data1_sam_x,
data1_sam_y,
resp.type="Two class unpaired",
fdr.output = 0.5,
nperms = 1000,
genenames = rownames(data1_sam_x)
)
samobj1
############# DATASET 2
data2_sam <- data2 %>%
select(donor_id, outcome, Feature, value) %>%
mutate(outcome = factor(outcome, labels = c(1, 2))) %>%
pivot_wider(
names_from = Feature,
values_from = value
) %>%
select(-donor_id)
data2_sam_y <- data2_sam[['outcome']]
data2_sam_x <- t(as.data.frame(data2_sam[-1]))
samobj2 <- samr::SAM(
data2_sam_x,
data2_sam_y,
resp.type="Two class unpaired",
fdr.output = 0.01,
nperms = 1000,
genenames = rownames(data2_sam_x)
)
samobj2
|