library(caret) library(tidyverse) library(MLeval) source("./data_prep.R") data_list <- sets_partitions results <- list() models <- c("rrlda", "naive_bayes", "rf", "regLogistic") fitControl <- trainControl( ## 10-fold CV method = "repeatedcv", number = 10, classProbs = TRUE, savePredictions = TRUE, repeats = 2 ) for (model in models) { dataset = 1 # for (data in data_list) { for (data in data_list[c(14, 16, 19)]) { print(paste("Training", model, "on dataset", dataset)) train <- data[["train"]] X_train <- as.data.frame(train[-c(1, 2)]) Y_train <- train[c(2)][[1]] levels(Y_train) <- c("Low", "High") set.seed(13121994) model_trained <- train( X_train, y = Y_train, method = model, trControl = fitControl ) results[[model]][[dataset]] <- model_trained dataset = dataset + 1 } } save(results, file="./modelling_results_withrrlda.RData") # save(results, file="./modelling_results.RData")