library(tidyverse) library(ggpubr) data <- read_csv("../csv/data_per_assay_per_year_per_outcome.csv") tbl <- data %>% mutate( assay_type = factor(assay, labels = ( c( "MSD (Arb. Intensity)", "Multiplex cytokine (log2 Z-score)", "Cell Cytometry (% parent popul.)", "Multiplex cytokine (log2 Z-score)", "Phospho cytometry (flow cytometery,\n 90 %tile fold-change)", "Cell Cytometry (% parent popul.)", "Phospho cytometry (Mass cytometry, arcsinh diff.)", "Complete blood count (abs. count/uL)", "MSD (Arb. Intensity)", "Cell Cytometry (% parent popul.)", "MSD (Arb. Intensity)", "Multiplex cytokine (log2 Z-score)", "Multiplex cytokine (log2 Z-score)", "Cell Cytometry (% parent popul.)" ) )) ) %>% filter( !(assay_type=="Phospho cytometry (flow cytometery,\n 90 %tile fold-change)" & data > 10000) ) plt <- tbl %>% ggplot(aes(data, fill=assay_type)) + geom_histogram(show.legend=F) + facet_wrap(~ factor(assay_type), scales="free") + theme_pubclean() plt ggsave("../images/assay_value_distributions.png", plt, width = 2 * 15, height = 19, units = "cm")