summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--tree.py95
1 files changed, 47 insertions, 48 deletions
diff --git a/tree.py b/tree.py
index 7ed632e..babd570 100644
--- a/tree.py
+++ b/tree.py
@@ -1,10 +1,10 @@
import numpy as np
-# import cProfile
-# import pstats
+import cProfile
+import pstats
# import tqdm
# from tqdm import trange
-# from pstats import SortKey
+from pstats import SortKey
from sklearn import metrics
# age,married,house,income,gender,class
@@ -88,7 +88,6 @@ class Tree:
# # De index van de row van x die we in de boom willen droppen
drop = 0
- node = nodes[0]
while nodes.size != 0:
node = nodes[0]
if node.col is None:
@@ -368,44 +367,44 @@ if __name__ == '__main__':
delimiter=',',
skip_header=True)
- print("\nDataset: credit data")
- tree_pred(x=credit_data[:, :5],
- tr=tree_grow(x=credit_data[:, 0:5],
- y=credit_data[:, 5],
- nmin=2,
- minleaf=1,
- nfeat=5),
- training=credit_data[:, 5])
-
- print("\nDataset: credit data")
- tree_pred_b(x=credit_data[:, :5],
- tr=tree_grow_b(x=credit_data[:, 0:5],
- y=credit_data[:, 5],
- nmin=2,
- minleaf=1,
- nfeat=4,
- m=50),
- training=credit_data[:, 5])
-
- print('\nDataset: pima indians')
- tree_pred(x=pima_indians[:, :8],
- tr=tree_grow(x=pima_indians[:, :8],
- y=pima_indians[:, 8],
- nmin=20,
- minleaf=5,
- nfeat=pima_indians.shape[1] - 1),
- training=pima_indians[:, 8])
-
-
- print('\nDataset: pima indians')
- tree_pred_b(x=pima_indians[:, :8],
- tr=tree_grow_b(x=pima_indians[:, :8],
- y=pima_indians[:, 8],
- nmin=20,
- minleaf=5,
- nfeat=4,
- m=5),
- training=pima_indians[:, 8])
+ # print("\nDataset: credit data")
+ # tree_pred(x=credit_data[:, :5],
+ # tr=tree_grow(x=credit_data[:, 0:5],
+ # y=credit_data[:, 5],
+ # nmin=2,
+ # minleaf=1,
+ # nfeat=5),
+ # training=credit_data[:, 5])
+
+ # print("\nDataset: credit data")
+ # tree_pred_b(x=credit_data[:, :5],
+ # tr=tree_grow_b(x=credit_data[:, 0:5],
+ # y=credit_data[:, 5],
+ # nmin=2,
+ # minleaf=1,
+ # nfeat=4,
+ # m=50),
+ # training=credit_data[:, 5])
+
+ # print('\nDataset: pima indians')
+ # tree_pred(x=pima_indians[:, :8],
+ # tr=tree_grow(x=pima_indians[:, :8],
+ # y=pima_indians[:, 8],
+ # nmin=20,
+ # minleaf=5,
+ # nfeat=pima_indians.shape[1] - 1),
+ # training=pima_indians[:, 8])
+
+
+ # print('\nDataset: pima indians')
+ # tree_pred_b(x=pima_indians[:, :8],
+ # tr=tree_grow_b(x=pima_indians[:, :8],
+ # y=pima_indians[:, 8],
+ # nmin=20,
+ # minleaf=5,
+ # nfeat=4,
+ # m=5),
+ # training=pima_indians[:, 8])
@@ -416,10 +415,10 @@ if __name__ == '__main__':
# Time profile of pima indians data prediction with single tree
# print("prediction metrics single tree pima indians:")
- # cProfile.run(
- # "tree_pred_b(x=pima_indians[:, :8], tr=tree_grow_b(x=pima_indians[:, :8], y=pima_indians[:, 8], nmin=20, minleaf=5, nfeat=4, m=5), training=pima_indians[:, 8])",
- # 'restats')
+ cProfile.run(
+ "tree_pred_b(x=pima_indians[:, :8], tr=tree_grow_b(x=pima_indians[:, :8], y=pima_indians[:, 8], nmin=20, minleaf=5, nfeat=4, m=5), training=pima_indians[:, 8])",
+ 'restats')
- # p = pstats.Stats('restats')
- # p.sort_stats(SortKey.TIME)
- # p.print_stats()
+ p = pstats.Stats('restats')
+ p.sort_stats(SortKey.TIME)
+ p.print_stats()